Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA polymerases I and III, growth control and cancer

Key Points

  • Cell growth depends on protein accumulation and is therefore tied to the synthesis of rRNA and tRNA by RNA polymerase (Pol) I and Pol III.

  • Restricting rRNA production will curtail cell growth and proliferation. Conversely, an activated Pol-I-specific transcription factor can be sufficient to accelerate proliferation.

  • Activation of the ERK signalling pathway increases transcription by Pol I and Pol III, allowing the coordinate synthesis of rRNA and tRNA to meet the growth requirements of the cell. This pathway is activated aberrantly in 30% of human cancers, due to defects in upstream factors, such as Ras.

  • Many cancers deregulate Myc, an oncoprotein that directly activates the synthesis of rRNA and tRNA. Both Myc and ERK also induce many other components of the protein synthetic apparatus, thereby increasing the capacity for translation and therefore growth.

  • Some tumour types consistently overexpress specific components of the Pol I or Pol III machinery, which indicates that there is selective pressure to increase the output of these transcription systems as cancers develop.

  • Production of rRNA and tRNA is restrained by three cardinal tumour suppressors, RB, p53 and ARF — this clearly illustrates the importance of controlling the levels of these products. Such restraint is compromised in most, if not all, cancers, which allows a dangerous increase in the capacity of a cell for biosynthesis and growth.

  • Repression of transcription by Pol I and Pol III could make an important contribution to the growth-control functions of these tumour suppressors.

Abstract

Transcription of rRNA and tRNA genes by RNA polymerases I and III is essential for sustained protein synthesis and is therefore a fundamental determinant of the capacity of a cell to grow. When cell growth is not required, this transcription is repressed by retinoblastoma protein, p53 and ARF. However, inactivation of these tumour suppressors in cancers deregulates RNA polymerases I and III, and oncoproteins such as Myc can stimulate these systems further. Such events might have a significant impact on the growth potential of tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basal human Pol I and Pol III transcription complexes.
Figure 2: ERK targets that stimulate protein synthesis and therefore cell growth.
Figure 3: Cross-talk between p53, ARF and ribosome biosynthesis.
Figure 4: The RB pathway has several effects on transcription.
Figure 5: Induction of rRNA and tRNA synthesis by mitogens.

Similar content being viewed by others

References

  1. Busch, H. & Smetana, K. in The Nucleolus. (eds Busch, H. & Smetana, K.) 448–471 (Academic Press, 1970).

    Google Scholar 

  2. Derenzini, M. & Ploton, D. in Molecular Biology in Histopathology (ed. Crocker, J.) 231–249 (John Wiley & Sons Ltd, 1994).

    Google Scholar 

  3. King, R. J. B. Cancer Biology. (Longman, UK, 1996).

    Google Scholar 

  4. Pianese, G. Beitrag zur Histologie und Aetiologie der Carcinoma Histologische und experimentelle Untersuchungen. Beitr. Pathol. Anat. Allgem. Pathol. 142, 1–193 (1896).

    Google Scholar 

  5. Narayanswami, S. & Hamkalo, B. A. High resolution mapping of Xenopus laevis 5S and ribosomal RNA genes by EM in situ hybridization. Cytometry 11, 144–152 (1990).

    CAS  PubMed  Google Scholar 

  6. Jacobson, M. R. et al. Nuclear domains of the RNA subunit of RNase P. J. Cell Sci. 110, 829–837 (1997).

    CAS  PubMed  Google Scholar 

  7. Bertrand, E., Houser-Scott, F., Kendall, A., Singer, R. H. & Engelke, D. R. Nucleolar localization of early tRNA processing. Genes Dev. 12, 2463–2468 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carmo-Fonseca, M., Mendes-Soares, L. & Campos, I. To be or not to be in the nucleolus. Nature Cell Biol. 2, E107–E112 (2000).

    CAS  PubMed  Google Scholar 

  9. Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar clustering of dispersed tRNA genes. Science 302, 1399–1401 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, C., Politz, J. C., Pederson, T. & Huang, S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol. Biol. Cell. 14, 2425–2435 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Killander, D. & Zetterberg, A. A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Exp. Cell Res. 40, 12–20 (1965).

    CAS  PubMed  Google Scholar 

  12. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp. Cell Res. 105, 79–98 (1977).

    CAS  PubMed  Google Scholar 

  13. Nasmyth, K. Another role rolls in. Nature 382, 28–29 (1996).

    CAS  PubMed  Google Scholar 

  14. Neufeld, T. P. & Edgar, B. A. Connections between growth and the cell cycle. Curr. Opin. Cell Biol. 10, 784–790 (1998).

    CAS  PubMed  Google Scholar 

  15. Zetterberg, A. & Killander, D. Quantitative cytophotometric and autoradiographic studies on the rate of protein synthesis during interphase in mouse fibroblasts in vitro. Exp. Cell Res. 40, 1–11 (1965).

    CAS  PubMed  Google Scholar 

  16. Baxter, G. C. & Stanners, C. P. The effect of protein degradation on cellular growth characteristics. J. Cell. Physiol. 96, 139–146 (1978).

    CAS  PubMed  Google Scholar 

  17. Brooks, R. F. Continuous protein synthesis is required to maintain the probability of entry into S phase. Cell 12, 311–317 (1977).

    CAS  PubMed  Google Scholar 

  18. Kief, D. R. & Warner, J. R. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1, 1007–1015 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Liebhaber, S. A., Wolf, S. & Schlessinger, D. Differences in rRNA metabolism of primary and SV40-transformed human fibroblasts. Cell 13, 121–127 (1978).

    CAS  PubMed  Google Scholar 

  20. Francis, M. A. & Rajbhandary, U. L. Expression and function of a human initiator tRNA gene in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 4486–4494 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brandenburger, Y., Jenkins, A., Autelitano, D. J. & Hannan, R. D. Increased expression of UBF is a critical determinant for rRNA synthesis and hypertrophic growth of cardiac myocytes. FASEB J. 15, 2051–2053 (2001). Shows that the induction of UBF is essential for growth of cardiomyocytes.

    CAS  PubMed  Google Scholar 

  22. Zhao, J., Yuan, X., Frodin, M. & Grummt, I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 11, 405–413 (2003). Reveals that proliferation can be stimulated by a constitutively activated Pol-I-specific transcription factor.

    CAS  PubMed  Google Scholar 

  23. Itahana, K. et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol. Cell 12, 1151–1164 (2003).

    CAS  PubMed  Google Scholar 

  24. Stefanovsky, V. Y. et al. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol. Cell 8, 1063–1073 (2001).

    CAS  PubMed  Google Scholar 

  25. Felton-Edkins, Z. A. et al. The mitogen-activated protein (MAP) kinase ERK induces tRNA synthesis by phosphorylating TFIIIB. EMBO J. 22, 2422–2432 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schmidt, E. V. The role of c-myc in cellular growth control. Oncogene 18, 2988–2996 (1999).

    CAS  PubMed  Google Scholar 

  27. Downward, J. Targeting Ras signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    CAS  Google Scholar 

  28. Hazzalin, C. A. & Mahadevan, L. C. MAPK-regulated transcription: a continuously variable gene switch? Nature Rev. Mol. Cell Biol. 3, 30–40 (2002).

    CAS  Google Scholar 

  29. Colgan, J. & Manley, J. L. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 6, 304–315 (1992).

    CAS  PubMed  Google Scholar 

  30. Wang, H. -D., Yuh, C. -H., Dang, C. V. & Johnson, D. L. The hepatitis B virus X protein increases the cellular level of TATA-binding protein, which mediates transactivation of RNA polymerase III genes. Mol. Cell. Biol. 15, 6720–6728 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Trivedi, A., Vilalta, A., Gopalan, S. & Johnson, D. L. TATA-binding protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells. Mol. Cell. Biol. 16, 6909–6916 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Majello, B., Napolitano, G., De Luca, P. & Lania, L. Recruitment of human TBP selectively activates RNA polymerase II TATA-dependent promoters. J. Biol. Chem. 273, 16509–16516 (1998).

    CAS  PubMed  Google Scholar 

  33. Wang, H. -D., Trivedi, A. & Johnson, D. L. Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein. Mol. Cell. Biol. 18, 7086–7094 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhong, S., Zhang, C. & Johnson, D. L. Epidermal growth factor enhances cellular TATA binding protein levels and induces RNA polymerase I- and III-dependent gene activity. Mol. Cell. Biol. 24, 5119–5129 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sears, R., Leone, G., DeGregori, J. & Nevins, J. R. Ras enhances Myc protein stability. Mol. Cell 3, 169–179 (1999).

    CAS  PubMed  Google Scholar 

  36. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenwald, I. B. Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2α in transformed cells. Cancer Lett. 102, 113–123 (1996).

    CAS  PubMed  Google Scholar 

  38. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999). Shows the ability of Myc to promote protein synthesis and increase the size of B cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999). Genetic evidence that Myc controls cell growth and size.

    CAS  PubMed  Google Scholar 

  40. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    CAS  PubMed  Google Scholar 

  41. Beier, R. et al. Induction of cyclin E–cdk2 kinase activity, E2F-dependent transcription and cell growth by Myc are genetically separable events. EMBO J. 19, 5813–5823 (2000). Shows that, although E2F can induce cell-cycle progression, it does not stimulate cell growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, S., Li, Q., Dang, C. V. & Lee, L. A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  44. Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, Q. M. et al. Identification of c-Myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000).

    CAS  PubMed  Google Scholar 

  46. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Neiman, P. E. et al. Analysis of gene expression during myc oncogene-induced lymphomagenesis in the bursa of Fabricius. Proc. Natl Acad. Sci. USA 98, 6378–6383 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shiio, Y. et al. Quantitative proteomic analysis of Myc oncoprotein function. EMBO J. 21, 5088–5096 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schlosser, I. et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 31, 6148–6156 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003). Shows that Pol III transcription is activated potently and directly by Myc.

    CAS  PubMed  Google Scholar 

  54. Felton-Edkins, Z. A. et al. Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc. Cell Cycle 2, 181–184 (2003).

    CAS  PubMed  Google Scholar 

  55. Poortinga, G. et al. MAD1 and c-Myc regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    CAS  PubMed  Google Scholar 

  57. Nesbit, C. E., Tersak, J. M. & Prochownik, E. V. MYC oncogenes and human neoplastic disease. Oncogene 18, 3004–3016 (1999).

    CAS  PubMed  Google Scholar 

  58. Fingar, D. C. & Blenis, J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151–3171 (2004).

    CAS  PubMed  Google Scholar 

  59. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    CAS  PubMed  Google Scholar 

  60. Hall, M. N., Raff, M. & Thomas, G. Cell Growth: Control of Cell Size. (Cold Spring Harbor Laboratory Press, New York, USA, 2004).

    Google Scholar 

  61. Mahajan, P. B. Modulation of transcription of rRNA genes by rapamycin. Int. J. Immunopharmacol. 16, 711–721 (1994).

    CAS  PubMed  Google Scholar 

  62. Zaragoza, D., Ghavidel, A., Heitman, J. & Schultz, M. C. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol. Cell. Biol. 18, 4463–4470 (1998). Shows that transcription by Pol I and Pol III is regulated by the TOR pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Powers, T. & Walter, P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 987–1000 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Claypool, J. A. et al. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol. Cell. Biol. 15, 946–956 (2004).

    CAS  Google Scholar 

  65. Hannan, K. M. et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23, 8862–8877 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. James, M. J. & Zomerdijk, J. C. B. M. Phosphatidylinositol 3-kinase and mTOR signaling pathways regulate RNA polymerase I transcription in response to IGF-1 and nutrients. J. Biol. Chem. 279, 8911–8918 (2004).

    CAS  PubMed  Google Scholar 

  67. Mayer, C., Zhao, J., Yuan, X. & Grummt, I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423–434 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vogt, P. K. PI3-kinase, mTOR, protein synthesis and cancer. Trends Mol. Med. 7, 482–484 (2001).

    CAS  PubMed  Google Scholar 

  69. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  70. Shamji, A., Nghiem, P. & Schreiber, S. L. Integration of growth factor and nutrient signaling: implications for cancer biology. Mol. Cell 12, 271–280 (2003).

    CAS  PubMed  Google Scholar 

  71. Bjornsti, M. -A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nature Rev. Cancer 4, 335–348 (2004).

    CAS  Google Scholar 

  72. Huang, R. et al. Upstream binding factor up-regulated in hepatocellular carcinoma is related to the survival and cisplatin-sensitivity of cancer cells. FASEB J. 16, 293–301 (2002).

    PubMed  Google Scholar 

  73. Winter, A. G. et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumours. Proc. Natl Acad. Sci. USA 97, 12619–12624 (2000). First demonstration that a Pol-III-specific transcription factor is consistently overexpressed in tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Felton-Edkins, Z. A. & White, R. J. Multiple mechanisms contribute to the activation of RNA polymerase III transcription in cells transformed by papovaviruses. J. Biol. Chem. 277, 48182–48191 (2002).

    CAS  PubMed  Google Scholar 

  75. Chesnokov, I., Chu, W. -M., Botchan, M. R. & Schmid, C. W. p53 inhibits RNA polymerase III-directed transcription in a promoter-dependent manner. Mol. Cell. Biol. 16, 7084–7088 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cairns, C. A. & White, R. J. p53 is a general repressor of RNA polymerase III transcription. EMBO J. 17, 3112–3123 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Budde, A. & Grummt, I. p53 represses ribosomal gene transcription. Oncogene 18, 1119–1124 (1999).

    CAS  PubMed  Google Scholar 

  78. Zhai, W. & Comai, L. Repression of RNA polymerase I transcription by the tumour suppressor p53. Mol. Cell. Biol. 20, 5930–5938 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Crighton, D. et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 22, 2810–2820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sugimoto, M., Kuo, M. -L., Roussel, M. F. & Sherr, C. J. Nucleolar Arf tumour suppressor inhibits ribosomal RNA processing. Mol. Cell 11, 415–424 (2003). Shows that a primordial function of ARF is to inhibit the production of mature rRNA.

    CAS  PubMed  Google Scholar 

  81. Lane, D. P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    CAS  PubMed  Google Scholar 

  82. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  83. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    CAS  Google Scholar 

  84. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    CAS  PubMed  Google Scholar 

  85. Hollstein, M. et al. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551–3555 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stein, T., Crighton, D., Warnock, L. J., Milner, J. & White, R. J. Several regions of p53 are involved in repression of RNA polymerase III transcription. Oncogene 21, 5540–5547 (2002).

    CAS  PubMed  Google Scholar 

  87. Stein, T., Crighton, D., Boyle, J. M., Varley, J. M. & White, R. J. RNA polymerase III transcription can be derepressed by oncogenes or mutations that compromise p53 function in tumours and Li–Fraumeni syndrome. Oncogene 21, 2961–2970 (2002).

    CAS  PubMed  Google Scholar 

  88. Varley, J. M., Evans, D. G. R. & Birch, J. M. Li–Fraumeni syndrome — a molecular and clinical review. Br. J. Cancer 76, 1–14 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sherr, C. J. The INK4a/ARF network in tumour suppression. Nature Rev. Mol. Cell Biol. 2, 731–737 (2001).

    CAS  Google Scholar 

  91. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–112 (2002).

    CAS  PubMed  Google Scholar 

  92. Pestov, D. G., Strezoska, Z. & Lau, L. F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G1/S transition. Mol. Cell. Biol. 21, 4246–4255 (2001). Shows that a defect in rRNA production can trigger a potent p53-mediated cell-cycle arrest.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lapik, Y. R., Fernandes, C. J., Lau, L. F. & Pestov, D. G. Physical and functional interaction between Pes1 and Bop1 in mammalian ribosome biogenesis. Mol. Cell 15, 17–29 (2004).

    CAS  PubMed  Google Scholar 

  94. Lohrum, M. A. E., Ludwig, R. L., Kubbutat, M. H. G., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    CAS  PubMed  Google Scholar 

  95. Zhang, Y. et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell. Biol. 23, 8902–8912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003). Presents evidence that nucleolar activity is a primary determinant of p53 function.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Horn, H. F. & Vousden, K. H. Guarding the guardian? Nature 427, 110–111 (2004).

    CAS  PubMed  Google Scholar 

  98. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  99. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    CAS  PubMed  Google Scholar 

  100. Morris, E. J. & Dyson, N. J. Retinoblastoma protein partners. Adv. Cancer Res. 82, 1–54 (2001).

    CAS  PubMed  Google Scholar 

  101. Helin, K. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8, 28–35 (1998).

    CAS  PubMed  Google Scholar 

  102. Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nature Rev. Mol. Cell Biol. 3, 11–20 (2002).

    CAS  Google Scholar 

  103. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    CAS  PubMed  Google Scholar 

  104. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    CAS  PubMed  Google Scholar 

  105. Grana, X., Garriga, J. & Mayol, X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17, 3365–3383 (1998).

    PubMed  Google Scholar 

  106. Mulligan, G. & Jacks, T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 14, 223–229 (1998).

    CAS  PubMed  Google Scholar 

  107. Kratzke, R. A. et al. Partial inactivation of the RB product in a family with incomplete penetrance of familial retinoblastoma and benign retinal tumors. Oncogene 9, 1321–1326 (1994).

    CAS  PubMed  Google Scholar 

  108. Sellers, W. R. et al. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12, 95–106 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Whitaker, L. L., Su, H., Baskaran, R., Knudsen, E. S. & Wang, J. Y. J. Growth suppression by an E2F-binding-defective retinoblastoma protein (RB): contribution from the RB C pocket. Mol. Cell. Biol. 18, 4032–4042 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cavanaugh, A. H. et al. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 374, 177–180 (1995). First demonstration that RB regulates rRNA synthesis.

    CAS  PubMed  Google Scholar 

  111. White, R. J., Trouche, D., Martin, K., Jackson, S. P. & Kouzarides, T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382, 88–90 (1996).

    CAS  PubMed  Google Scholar 

  112. Chu, W. -M., Wang, Z., Roeder, R. G. & Schmid, C. W. RNA polymerase III transcription repressed by Rb through its interactions with TFIIIB and TFIIIC2. J. Biol. Chem. 272, 14755–14761 (1997).

    CAS  PubMed  Google Scholar 

  113. Larminie, C. G. C. et al. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J. 16, 2061–2071 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Voit, R., Schafer, K. & Grummt, I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol. Cell. Biol. 17, 4230–4237 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pelletier, G. et al. Competitive recruitment of CBP and Rb-HDAC regulates UBF acetylation and ribosomal transcription. Mol. Cell 6, 1059–1066 (2000).

    CAS  PubMed  Google Scholar 

  116. Hirsch, H. A., Jawdekar, G. W., Lee, K. -A., Gu, L. & Henry, R. W. Distinct mechanisms for repression of RNA polymerase III transcription by the retinoblastoma tumor suppressor protein. Mol. Cell. Biol. 24, 5989–5999 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sutcliffe, J. E., Brown, T. R. P., Allison, S. J., Scott, P. H. & White, R. J. Retinoblastoma protein disrupts interactions required for RNA polymerase III transcription. Mol. Cell. Biol. 20, 9192–9202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hannan, K. M. et al. Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 19, 4988–4999 (2000).

    CAS  PubMed  Google Scholar 

  119. Hannan, K. M. et al. RNA polymerase I transcription in confluent cells: Rb downregulates rDNA transcription during confluence-induced cell cycle arrest. Oncogene 19, 3487–3497 (2000).

    CAS  PubMed  Google Scholar 

  120. Scott, P. H. et al. Regulation of RNA polymerase III transcription during cell cycle entry. J. Biol. Chem. 276, 1005–1014 (2001).

    CAS  PubMed  Google Scholar 

  121. Sutcliffe, J. E. et al. RNA polymerase III transcription factor IIIB is a target for repression by pocket proteins p107 and p130. Mol. Cell. Biol. 19, 4255–4261 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ciarmatori, S. et al. Overlapping functions of the pRb family in the regulation of rRNA synthesis. Mol. Cell. Biol. 21, 5806–5814 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Paule, M. R. & White, R. J. Transcription by RNA polymerases I and III. Nucleic Acids Res. 28, 1283–1298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Friend, S. H. et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646 (1986).

    CAS  PubMed  Google Scholar 

  125. Harbour, J. W. Overview of RB gene mutations in patients with retinoblastoma. Ophthalmology 105, 1442–1447 (1998).

    CAS  PubMed  Google Scholar 

  126. DiCiommo, D., Gallie, B. L. & Bremner, R. Retinoblastoma: the disease, gene and protein provide critical leads to understand cancer. Semin. Cancer Biol. 10, 255–269 (2000).

    CAS  PubMed  Google Scholar 

  127. Hu, Q., Dyson, N. & Harlow, E. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. EMBO J. 9, 1147–1155 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Qin, X., Chittenden, T., Livingston, D. M. & Kaelin, W. G. Jr. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    CAS  PubMed  Google Scholar 

  129. Kaye, F. J., Kratzke, R. A., Gerster, J. L. & Horowitz, J. M. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc. Natl Acad. Sci. USA 87, 6922–6926 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Brown, T. R. P., Scott, P. H., Stein, T., Winter, A. G. & White, R. J. RNA polymerase III transcription: its control by tumor suppressors and its deregulation by transforming agents. Gene Expr. 9, 15–28 (2000).

    CAS  PubMed  Google Scholar 

  131. Helin, K. et al. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc. Natl Acad. Sci. USA 94, 6933–6938 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bates, S. & Peters, G. Cyclin D1 as a cellular proto-oncogene. Semin. Cancer Biol. 6, 73–82 (1995).

    CAS  PubMed  Google Scholar 

  133. Rocco, J. W. & Sidransky, D. p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp. Cell. Res. 264, 42–55 (2001).

    CAS  PubMed  Google Scholar 

  134. Voit, R., Hoffmann, M. & Grummt, I. Phosphorylation by G1-specific cdk–cyclin complexes activates the nucleolar transcription factor UBF. EMBO J. 18, 1891–1899 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Voit, R. & Grummt, I. Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc. Natl Acad. Sci. USA 98, 13631–13636 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    CAS  PubMed  Google Scholar 

  137. Munger, K. et al. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumour suppressor gene product. EMBO J. 8, 4099–4105 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev. Cancer 2, 342–350 (2002).

    CAS  Google Scholar 

  139. Larminie, C. G. C. et al. Activation of RNA polymerase III transcription in cells transformed by simian virus 40. Mol. Cell. Biol. 19, 4927–4934 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. DeCaprio, J. A. et al. SV40 large tumour antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    CAS  PubMed  Google Scholar 

  141. Moran, E. A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334, 168–170 (1988).

    CAS  PubMed  Google Scholar 

  142. Whyte, P. et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124–129 (1988).

    CAS  PubMed  Google Scholar 

  143. Whyte, P., Williamson, N. M. & Harlow, E. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56, 67–75 (1989).

    CAS  PubMed  Google Scholar 

  144. Dyson, N. et al. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J. Virol. 64, 1353–1356 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hirsch, H. A., Gu, L. & Henry, R. W. The retinoblastoma tumor suppressor protein targets distinct general transcription factors to regulate RNA polymerase III gene expression. Mol. Cell. Biol. 20, 9182–9191 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zatsepina, O. et al. The human papillomavirus type 16 E7 protein is associated with the nucleolus in mammalian and yeast cells. Oncogene 14, 1137–1145 (1997).

    CAS  PubMed  Google Scholar 

  147. Dimitrova, D. S. & Berezney, R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 115, 4037–4051 (2002).

    CAS  PubMed  Google Scholar 

  148. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    CAS  PubMed  Google Scholar 

  149. Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the author's laboratory is funded by Cancer Research UK, the Association for International Cancer Research, the Wellcome Trust, the Medical Research Council and the Biotechnology and Biosciences Research Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Burkitt lymphoma

Li–Fraumeni syndrome

Swiss-Prot

ARF

CBP

eIF4E

HDM2

L11

MAD1

Myc

nucleophosmin

p53

p107

p130

RB

SL1

TBP

TFIIIB

TIF1A

UBF

FURTHER INFORMATION

Robert White's laboratory

Glossary

rRNA

(ribosomal RNA). An RNA that carries out essential structural and catalytic roles within the ribosome. The Pol I products (the 28S, 18S and 5.8S rRNAs) are sometimes referred to as the large rRNAs to distinguish them from the Pol III product 5S rRNA.

tRNA

(transfer RNA). A short RNA that functions as an essential adaptor to translate the genetic information carried by mRNA into the sequence of amino acids in a polypeptide. This is possible because each tRNA only recognizes a particular amino acid and matches it to specific codons in the mRNA.

7SL RNA

An essential RNA component of the signal-recognition particle.

SIGNAL-RECOGNITION PARTICLE

A complex that is responsible for inserting nascent polypeptides into or through cell membranes; it identifies an N-terminal signal sequence that is carried by proteins destined for secretion or membrane localization.

SHORT INTERSPERSED NUCLEAR ELEMENT

(SINE). A pseudogene derived from tRNA or 7SL RNA that is propagated by retrotransposition. SINEs are typically 200–300 bp long and contain functional Pol III promoters. They are highly abundant in mammalian genomes, especially in humans, where the Alu SINE family constitutes 10% of the genomic DNA.

INITIATOR tRNA

The tRNA that is responsible for bringing the first amino acid to the start of the message.

TATA-BINDING PROTEIN

(TBP). A small, highly conserved protein that binds the TATA motif in gene promoters, but is also used by genes that lack TATA boxes. TBP is essential for the expression of rRNA and all Pol-III-transcribed genes, as well as many Pol II templates.

CHROMATIN IMMUNOPRECIPITATION

A technique for determining whether a protein binds to a particular region of the genome in vivo. It involves treating live cells with formaldehyde to form nonspecific crosslinks between the DNA and any associated proteins. The cells are then lysed, the genomic DNA is sheared into small fragments and the protein of interest is immunoprecipitated. Any protein-associated DNA is then removed and analysed by PCR.

POLYOMAVIRUS

A small DNA tumour virus that causes tumours in mice.

U6 SMALL NUCLEAR RNA

(U6 snRNA). snRNA molecules are small, untranslated RNA molecules that function in the nucleus by guiding the assembly of macromolecular complexes on the target RNA to allow site-specific modifications or processing reactions to occur. U6 snRNA is an essential small nuclear (sn)RNA that is required for pre-mRNA splicing.

GST PULL-DOWN ASSAY

A technique that allows the detection of proteins that bind in vitro to an immobilized recombinant protein fused to glutathione S-transferase (GST).

LARGE T ANTIGEN

The transforming oncoprotein of the DNA tumour virus simian virus 40 (SV40).

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol 6, 69–78 (2005). https://doi.org/10.1038/nrm1551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing