Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA damage checkpoints in stem cells, ageing and cancer

Key Points

  • Checkpoint responses have diverse roles in adult stem cells depending on the genetic context and the level of DNA damage in tissues and stem cells, which increases with age. Thus, the role of checkpoints in stem cells may change during ageing.

  • The activation of checkpoint genes in response to DNA damage accumulation leads to depletion of stem cells by induction of apoptosis or differentiation. Whether checkpoints induce stem cell senescence remains unclear.

  • DNA damage checkpoint genes influence the maintenance and functionality of undamaged stem cells in adult tissues by controlling self-renewal, quiescence and differentiation. The functions of checkpoint genes in undamaged stem cells seem to be independent of and sometimes contrasting to their roles in DNA damage responses.

  • The deletion of checkpoint genes can lead to defects in quiescence and premature exhaustion of stem cells or to enhanced self-renewal and transformation of stem cells.

  • The deletion of checkpoint responses improves stem cell maintenance in the context of high levels of DNA damage. This can also result in improved tissue maintenance, when chromosomal stability is maintained at the stem cell level. In addition, checkpoint deletion can impair tumour initiation and maintenance by fuelling damage accumulation in cancer stem cells.

  • An increase in the gene dosage of naturally regulated checkpoint genes can lead to improved clearance of molecular damages, prolonged tissue maintenance and decreased carcinogenesis in the context of low levels of DNA damage. Whether these effects are stem cell-dependent is not known.

Abstract

DNA damage induces cell-intrinsic checkpoints, including p53 and retinoblastoma (RB), as well as upstream regulators (exonuclease 1 (EXO1), ataxia telangiectasia mutated (ATM), ATR, p16INK4a and p19ARF) and downstream targets (p21, PUMA (p53 upregulated modulator of apoptosis) and sestrins). Clearance of damaged cells by cell-intrinsic checkpoints suppresses carcinogenesis but as a downside may impair stem cell and tissue maintenance during ageing. Modulating the activity of DNA damage checkpoints can either accelerate or decelerate tissue ageing and age-related carcinogenesis. The outcome depends on cell-intrinsic and cell-extrinsic mechanisms that regulate the clearance of damaged cells and on the molecular context in ageing tissues, including the level of DNA damage accumulation itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms inducing clonal drifts in stem cell populations in response to DNA damage.
Figure 2: DNA damage checkpoints influence self-renewal, quiescence and maintenance of non-transformed somatic stem cells.
Figure 3: Deletions of checkpoint genes influence DNA damage-induced impairment of somatic stem cells.
Figure 4: Activation or inactivation of DNA damage checkpoints can have positive effects on ageing and cancer depending on the level of DNA damage.

Similar content being viewed by others

References

  1. Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature 448, 767–774 (2007).

    CAS  PubMed  Google Scholar 

  2. Rando, T. A. Stem cells, ageing and the quest for immortality. Nature 441, 1080–1086 (2006).

    CAS  PubMed  Google Scholar 

  3. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genet. 40, 915–920 (2008).

    CAS  PubMed  Google Scholar 

  4. Lorenz, E., Uphoff, D., Reid, T. R. & Shelton, E. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J. Natl Cancer Inst. 12, 197–201 (1951).

    CAS  PubMed  Google Scholar 

  5. Lepper, C., Partridge, T. A. & Fan, C. M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138, 3639–3646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, C. L., Zou, Y., He, W., Gage, F. H. & Evans, R. M. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 1004–1007 (2008).

    CAS  PubMed  Google Scholar 

  7. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nature Med. 2, 1011–1016 (1996).

    CAS  PubMed  Google Scholar 

  11. Cho, R. H., Sieburg, H. B. & Muller-Sieburg, C. E. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111, 5553–5561 (2008). References 8–11 describe ageing-associated changes in HSCs in mice. Reference 8 provides experimental evidence for an ageing-associated clonal drift in the pool of HSCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Challen, G. A., Boles, N. C., Chambers, S. M. & Goodell, M. A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell 6, 265–278 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010). References 12–14 describe surface markers that distinguish myeloid-competent from lymphoid-competent HSCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, J., Geiger, H. & Rudolph, K. L. Immunoaging induced by hematopoietic stem cell aging. Curr. Opin. Immunol. 23, 532–536 (2011).

    CAS  PubMed  Google Scholar 

  16. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. Med. 208, 2691–2703 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ju, Z. et al. Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nature Med. 13, 742–747 (2007).

    CAS  PubMed  Google Scholar 

  18. Song, Z., Zhang, J., Ju, Z. & Rudolph, K. L. Telomere dysfunctional environment induces loss of quiescence and inherent impairments of hematopoietic stem cell function. Aging Cell 11, 449–455 (2012).

    PubMed  Google Scholar 

  19. Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007). Provides evidence that DNA damage accumulates in mouse HSCs during ageing and that the accumulation of DNA damage impairs stem cell functionality.

    CAS  PubMed  Google Scholar 

  20. Wang, J. et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148, 1001–1014 (2012). Shows that the granulocyte colony-stimulating factor (GCSF)–signal transducer and activator of transcription 3 (STAT3)–BATF pathway induces differentiation of HSCs in response to DNA damage, preferentially depleting lymphoid-competent HSCs.

    CAS  PubMed  Google Scholar 

  21. Collins, C. A., Zammit, P. S., Ruiz, A. P., Morgan, J. E. & Partridge, T. A. A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25, 885–894 (2007).

    CAS  PubMed  Google Scholar 

  22. Woolthuis, C. M., de Haan, G. & Huls, G. Aging of hematopoietic stem cells: intrinsic changes or micro-environmental effects? Curr. Opin. Immunol. 23, 512–517 (2011).

    CAS  PubMed  Google Scholar 

  23. Mandal, P. K., Blanpain, C. & Rossi, D. J. DNA damage response in adult stem cells: pathways and consequences. Nature Rev. Mol. Cell Biol. 12, 198–202 (2011).

    CAS  Google Scholar 

  24. Blanpain, C., Mohrin, M., Sotiropoulou, P. A. & Passegue, E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8, 16–29 (2011).

    CAS  PubMed  Google Scholar 

  25. Harfouche, G. & Martin, M. T. Response of normal stem cells to ionizing radiation: a balance between homeostasis and genomic stability. Mutat. Res. 704, 167–174 (2010).

    CAS  PubMed  Google Scholar 

  26. Meineke, V. The role of damage to the cutaneous system in radiation-induced multi-organ failure. BJR Suppl. 27, 85–99 (2005).

    Google Scholar 

  27. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998).

    CAS  PubMed  Google Scholar 

  28. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999). Provides experimental evidence that telomere shortening induces premature ageing in mice, preferentially affecting organ systems with high rates of cell turnover that strongly depend on tissue stem cells.

    CAS  PubMed  Google Scholar 

  29. Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice. EMBO J. 24, 861–871 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nijnik, A. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007).

    CAS  PubMed  Google Scholar 

  32. Reese, J. S., Liu, L. & Gerson, S. L. Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102, 1626–1633 (2003).

    CAS  PubMed  Google Scholar 

  33. Mohrin, M. et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7, 174–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sotiropoulou, P. A. et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biol. 12, 572–582 (2010).

    CAS  PubMed  Google Scholar 

  35. Ren, B., et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008). Shows the existence of a highly quiescent HSC population, which only divides in 2–3 months intervals.

    CAS  PubMed  Google Scholar 

  37. O'Sullivan, R. J. & Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nature Rev. Mol. Cell Biol. 11, 171–181 (2010).

    CAS  Google Scholar 

  38. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    CAS  PubMed  Google Scholar 

  39. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    CAS  PubMed  Google Scholar 

  40. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    CAS  PubMed  Google Scholar 

  41. Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831–834 (1997). Demonstrates that deletion of p21 can increase the proliferative capacity of human fibroblasts reaching replicative senescence.

    CAS  PubMed  Google Scholar 

  42. Wright, W. E. & Shay, J. W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Gerontol. 27, 383–389 (1992).

    CAS  PubMed  Google Scholar 

  43. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shay, J. W., Pereira-Smith, O. M. & Wright, W. R. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    CAS  PubMed  Google Scholar 

  45. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Herbig, U., Ferreira, M., Condel, L., Carey, D. & Sedivy, J. M. Cellular senescence in aging primates. Science 311, 1257 (2006).

    CAS  PubMed  Google Scholar 

  47. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rube, C. E. et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS ONE 6, e17487 (2011). Shows the accumulation of DNA damage in HSCs and progenitor cells during human ageing.

    PubMed  PubMed Central  Google Scholar 

  49. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99–105 (2007). Provides a proof of concept indicating that the inhibition of checkpoint genes improves stem cell functionality, tissue maintenance and lifespan in mice with dysfunctional telomeres.

    CAS  PubMed  Google Scholar 

  50. Baker, D. J. et al. Clearance of p16-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011). Shows that clearance of cells with an activated p16INK4a checkpoint delays ageing of some tissues in BubR1 hypomorphic mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Clarke, A. R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    CAS  PubMed  Google Scholar 

  52. Pollak, M. et al. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann. NY Acad. Sci. 959, 93–107 (2002).

    Google Scholar 

  53. Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol. 189, 1059–1070 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, C. et al. Reproductive aging in the Brown Norway rat is characterized by accelerated germ cell apoptosis and is not altered by luteinizing hormone replacement. J. Androl. 20, 509–518 (1999).

    CAS  PubMed  Google Scholar 

  55. Perez, G. I. et al. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J. 19, 860–862 (2005).

    CAS  PubMed  Google Scholar 

  56. Perez, G. I. et al. Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice. Proc. Natl Acad. Sci. USA 104, 5229–5234 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    CAS  PubMed  Google Scholar 

  58. Sperka, T. et al. Puma and p21 represent cooperating checkpoints limiting self-renewal and chromosomal instability of somatic stem cells in response to telomere dysfunction. Nature Cell Biol. 14, 73–79 (2012).

    CAS  Google Scholar 

  59. Begus-Nahrmann, Y. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nature Genet. 41, 1138–1143 (2009). Demonstrates that differentiation induction limits maintenance of melanocytic stem cells in response to irradiation.

    CAS  PubMed  Google Scholar 

  60. Inomata, K. et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137, 1088–1099 (2009).

    CAS  PubMed  Google Scholar 

  61. Paulus, U., Potten, C. S. & Loeffler, M. A model of the control of cellular regeneration in the intestinal crypt after perturbation based solely on local stem cell regulation. Cell Prolif. 25, 559–578 (1992).

    CAS  PubMed  Google Scholar 

  62. Li, M. et al. Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol. Cell 46, 30–42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Betz, B. C. et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J. Exp. Med. 207, 933–942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohyashiki, J. H. et al. Telomere shortening associated with disease evolution patterns in myelodysplastic syndromes. Cancer Res. 54, 3557–3560 (1994).

    CAS  PubMed  Google Scholar 

  65. TeKippe, M., Harrison, D. E. & Chen, J. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp. Hematol. 31, 521–527 (2003).

    CAS  PubMed  Google Scholar 

  66. Chen, J. et al. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp. Hematol. 36, 1236–1243 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Katz, S. F. et al. Disruption of Trp53 in livers of mice induces formation of carcinomas with bilineal differentiation. Gastroenterology 142, 1229–1239 (2011).

    Google Scholar 

  69. Meletis, K. et al. p53 suppresses the self-renewal of adult neural stem cells. Development 133, 363–369 (2006).

    CAS  PubMed  Google Scholar 

  70. Zhao, Z. et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 24, 1389–1402 (2010). Shows that p53 deletion enhances self-renewal of myeloid progenitor cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Menendez, S. Camus, S. & Izpisua Belmonte J. C. p53: guardian of reprogramming. Cell Cycle 9, 3887–3891 (2010).

    CAS  PubMed  Google Scholar 

  72. Cicalese, A. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138, 1083–1095 (2009). Demonstrates that p53 deletion enhances self-renewal of breast epithelial stem cells.

    CAS  PubMed  Google Scholar 

  73. Milyavsky, M. et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7, 186–197 (2010).

    CAS  PubMed  Google Scholar 

  74. Liu, Y. et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4, 37–48 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dumble, M. et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109, 1736–1742 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Biteau, B. et al. Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet. 6, e1001159 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    CAS  PubMed  Google Scholar 

  78. Kippin, T. E. Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756–767 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Van Os, R. et al. A limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 25, 836–843 (2007).

    CAS  PubMed  Google Scholar 

  80. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nature Rev. Mol. Cell Biol. 9, 616–627 (2008).

    CAS  Google Scholar 

  82. Greenow, K. R., Clarke, A. R. & Jones, R. H. Chk1 deficiency in the mouse small intestine results in p53-independent crypt death and subsequent intestinal compensation. Oncogene 28, 1443–1453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maryanovich, M. et al. The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells. Nature Cell Biol. 14, 535–541 (2012).

    CAS  PubMed  Google Scholar 

  84. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 43, 1997–2002 (2004). Shows that ATM deletion increases ROS and impairs HSC functionality, and that treatment with antioxidative agents rescues the functionality of ATM-deficient HSCs.

    Google Scholar 

  85. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    CAS  PubMed  Google Scholar 

  86. Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421–426 (2006).

    CAS  PubMed  Google Scholar 

  87. Liu, Y., et al. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8, 439–448 (2009).

    CAS  PubMed  Google Scholar 

  88. Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448–452 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135, 227–239 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Feng, Z. et al. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc. Natl Acad. Sci. USA 104, 16633–16638 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Attema, J. L., Pronk, C. J., Norddahl, G. L., Nygren, J. M. & Bryder, D. Hematopoietic stem cell ageing is uncoupled from p16INK4A-mediated senescence. Oncogene 28, 2238–2243 (2009).

    CAS  PubMed  Google Scholar 

  92. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    CAS  PubMed  Google Scholar 

  93. Stepanova, L. & Sorrentino, B. P. A limited role for p16Ink4a and p19Arf in the loss of hematopoietic stem cells during proliferative stress. Blood 106, 827–832 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharpless, N. E., Ramsey, M. R., Balasubramanian, P., Castrillon, D. H. & DePinho, R. A. The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis. Oncogene 23, 379–385 (2004).

    CAS  PubMed  Google Scholar 

  95. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997).

    CAS  PubMed  Google Scholar 

  96. Liu, D. et al. Puma is required for p53-induced depletion of adult stem cells. Nature Cell Biol. 117, 3257–3267 (2010).

    Google Scholar 

  97. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    CAS  PubMed  Google Scholar 

  98. Wong, K. K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643–648 (2003).

    CAS  PubMed  Google Scholar 

  99. Smilenov, L. B. et al. Influence of ATM function on telomere metabolism. Oncogene 15, 2659–2665 (1997).

    CAS  PubMed  Google Scholar 

  100. Stiff, T. et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schaetzlein, S. et al. Exonuclease-1 deletion impairs DNA damage signaling and prolongs lifespan of telomere-dysfunctional mice. Cell 130, 863–877 (2007). Shows that EXO1 contributes to the induction of DNA damage checkpoints and tissue atrophy in mice with short telomeres.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wei, K. et al. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 17, 603–614 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Maringele, L. & Lydall, D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70δ mutants. Genes Dev. 16, 1919–1933 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet. 28, 155–159 (2001).

    CAS  PubMed  Google Scholar 

  105. Carbonneau, C. L. et al. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis. Blood 119, 717–726 (2012).

    CAS  PubMed  Google Scholar 

  106. Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genet. 36, 744–749 (2004).

    CAS  PubMed  Google Scholar 

  107. Baker, D. J. et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biol. 10, 825–836 (2008).

    CAS  PubMed  Google Scholar 

  108. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).

    Google Scholar 

  109. Kirkwood, T. B. & Melov, S. On the programmed/non-programmed nature of ageing within the life history. Curr. Biol. 21, R701–R707 (2011).

    CAS  PubMed  Google Scholar 

  110. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    CAS  PubMed  Google Scholar 

  111. Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol. 5, e201 (2007).

    PubMed  PubMed Central  Google Scholar 

  112. Siegl-Cachedenier, I., Munoz, P., Flores, J. M., Klatt, P. & Blasco, M. A. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. 21, 2234–2247 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ferbeyre, G. & Lowe, S. W. The price of tumour suppression? Nature 415, 26–27 (2002).

    CAS  PubMed  Google Scholar 

  114. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    CAS  PubMed  Google Scholar 

  115. García-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002).

    PubMed  PubMed Central  Google Scholar 

  116. Matheu, A., et al. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev. 18, 2736–2746 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Mendrysa, S. M., et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. García-Cao, I. et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep. 7, 546–552 (2006).

    PubMed  PubMed Central  Google Scholar 

  119. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    CAS  PubMed  Google Scholar 

  120. Tomás-Loba, A. et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135, 609–622 (2008). References 119–120 indicate that an increase in physiologically regulated checkpoint responses delays tissue ageing and elongates lifespan of mice with low levels of damage accumulation.

    PubMed  Google Scholar 

  121. Labi, V. et al. Apoptosis of leukocytes triggered by acute DNA damage promotes lymphoma formation. Genes Dev. 24, 1602–1607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Michalak, E. M. et al. Apoptosis-promoted tumorigenesis: γ-irradiation-induced thymic lymphomagenesis requires Puma-driven leukocyte death. Genes Dev. 24, 1608–1613 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Viale, A. et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457, 51–56 (2009). Demonstrates that p21 deletion impairs leukaemia initiation in mouse transplantation studies.

    CAS  PubMed  Google Scholar 

  124. Marusyk, A., Porter, C. C., Zaberezhnyy, V. & DeGregori, J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 8, e1000324 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

    CAS  PubMed  Google Scholar 

  126. Lombard, D. B. et al. DNA repair, genome stability, and aging. Cell 120, 497–512 (2005).

    CAS  PubMed  Google Scholar 

  127. Jiang, H., Ju, Z. Y. & Rudolph, K. L. Telomere shortening and ageing. Z. Gerontol. Geriatr. 40, 314–324 (2007).

    CAS  PubMed  Google Scholar 

  128. Wiemann, S. U. et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935–942 (2002).

    CAS  PubMed  Google Scholar 

  129. O'Sullivan, J. N. et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nature Genet. 32, 280–284 (2002).

    CAS  PubMed  Google Scholar 

  130. Hoeijmakers, J. H. DNA damage, aging, and cancer. N. Engl. J. Med. 361, 1475–1485 (2009).

    CAS  PubMed  Google Scholar 

  131. Heidinger, B. J. et al. Telomere length in early life predicts lifespan. Proc. Natl Acad. Sci. USA 109, 1743–1748 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Salomons, H. M. et al. Telomere shortening and survival in free-living corvids. Proc. Biol. Sci. R. Soc. 276, 3157–3165 (2009). References 131 and 132 provide evidence that telomere length and shortening rates determine life expectancy in free-living birds.

    CAS  Google Scholar 

  133. Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A. & Kerber, R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361, 393–395 (2003).

    CAS  PubMed  Google Scholar 

  134. Jiang, H. et al. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc. Natl Acad. Sci. USA 105, 11299–11304 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Watabe-Rudolph, M. et al. Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology 78, 569–577 (2012).

    CAS  PubMed  Google Scholar 

  136. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biol. 14, 355–365 (2012).

    CAS  PubMed  Google Scholar 

  137. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature Commun. 3, 708 (2012). References 136 and 137 show that telomeric DNA damage accumulates independently of telomere length in the context of DNA replications stress and ageing.

    Google Scholar 

  138. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    CAS  PubMed  Google Scholar 

  140. Pasciu, D. et al. Aging is associated with increased clonogenic potential in rat liver in vivo. Aging Cell 5, 373–377 (2006).

    CAS  PubMed  Google Scholar 

  141. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–134 (2010).

    CAS  PubMed  Google Scholar 

  142. Laconi, S. et al. A growth-constrained environment drives tumor progression in vivo. Proc. Natl Acad. Sci. USA 98, 7806–1781 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bilousova, G., Marusyk, A., Porter, C. C., Cardiff, R. D. & DeGregori, J. Impaired DNA replication within progenitor cell pools promotes leukemogenesis. PLoS Biol. 3, e401 (2005). Provides experimental evidence that loss of proliferative competition in stem and progenitor cells promotes carcinogenesis.

    PubMed  PubMed Central  Google Scholar 

  144. Porter, C. C., Baturin, D., Choudhary, R. & DeGregori, J. Relative fitness of hematopoietic progenitors influences leukemia progression. Leukemia 25, 891–895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005). Shows that DNA damage leads to an upregulation of surface receptors that stimulate innate immune cells to eliminate damaged cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biol. 11, 973–979 (2009).

    CAS  PubMed  Google Scholar 

  147. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    CAS  PubMed  Google Scholar 

  149. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009). Shows that CD47 upregulation serves as a 'don't eat me' signal, thus protecting both HSCs and leukaemic progenitors from macrophage killing.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.L.R. is funded by the Deutsche Forschungsgemeinschaft (DFG; Gottfried-Wilhelm Leibniz Award: Ru745-11, Ru745-10, SPP1356) and the Baden-Württemberg Stiftung (ASII-12 PL Rudolph). The authors apologize for work not being mentioned owing to space restrictions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lenhard Rudolph.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Leibniz Institute for Age Research - Fritz Lipmann Institute

Glossary

Replicative senescence

Terminal cell cycle arrest that limits the number of replication cycles, thus protecting the genomic integrity of a cell from telomere attrition.

Stem cell self-renewal

The capacity to recreate stem cells with the same capabilities resulting from asymmetric (yielding stem cell and progenitor cell) or symmetric cell division (yielding two stem cells). Alternativley, stem cells differentiate, which induces stem cell loss.

Cytokines

Biologically active molecules that are released by cells and affect the function of other cells.

Quiescence

A non-cycling, resting state in the G0 phase of the cell cycle that is important for long-term function.

Autophagy

A catabolic process involving the engulfment of (usually damaged) organelles and long-lived proteins or protein aggregates by autophagosomes, which are double-membrane vesicles. Autophagosomes fuse with lysosomes to form autophagolysosomes, in which their contents are degraded by acidic lysosomal hydrolases.

Mammalian target or rapamycin

(mTOR). A conserved Ser/Thr protein kinase that regulates cell growth, metabolism and the expression of cytokines and growth factors in response to environmental cues.

Tumour stem cells

A small cell population inside a tumour that produces all cell types found in a particular cancer. Tumour stem cells possess stem cell-like traits, including quiescence and self-renewal, rendering them more resistant to elimination compared with the bulk population of stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperka, T., Wang, J. & Rudolph, K. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13, 579–590 (2012). https://doi.org/10.1038/nrm3420

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3420

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer