Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organization of the ER–Golgi interface for membrane traffic control

Subjects

Key Points

  • Protein transport between the endoplasmic reticulum (ER) and Golgi is a highly dynamic process, and the organization of this conserved trafficking pathway differs in mammalian and plant cells.

  • Membrane traffic in the early secretory pathway initiates at the ER through the action of conserved coat complexes and transport machineries. There are distinct differences in structural organization of the ER–Golgi interface across species, including variations in the regulation of the core machinery, dependence on cytoskeletal components and cell-specific accessory molecules.

  • Emerging evidence indicates that the assembly of transport carriers and the organization of ER export sites (ERES) can be influenced by the type, size and quantity of the secreted cargo.

  • Current molecular models and hypotheses on the establishment and maintenance of ER–Golgi organization in mammalian and plant cells highlight evolutionary differences. Continued comparative analyses across a range of species should provide powerful insights into the structure, function and molecular mechanisms that control trafficking between the ER and the Golgi.

Abstract

Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER–Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER–Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bidirectional transport between the ER and the Golgi is mediated by COPI and COPII carriers.
Figure 2: The architecture of the COPII cage facilitates transport of diverse cargo.
Figure 3: The ER–Golgi interface and ERES have a distinct organization in mammals and plants.
Figure 4: Cellular architecture contributes to the ER–Golgi organization and positioning of ERES in mammalian and plant cells.

Similar content being viewed by others

References

  1. Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K. & Lippincott-Schwartz, J. Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brandizzi, F., Snapp, E. L., Roberts, A. G., Lippincott-Schwartz, J. & Hawes, C. Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14, 1293–1309 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altan-Bonnet, N., Sougrat, R. & Lippincott-Schwartz, J. Molecular basis for Golgi maintenance and biogenesis. Curr. Opin. Cell Biol. 16, 364–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Farquhar, M. G. & Palade, G. E. The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. 8, 2–10 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Driouich, A. & Staehelin, L. A. in The Golgi Apparatus (eds. Berger, E. G. and Roth, J.) 275–301 (Birkhäuser Verlag, 1997).

    Book  Google Scholar 

  6. Carpita, N. C. & Gibeaut, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Cavalier, D. M. et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20, 1519–1537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dirnberger, D., Bencur, P., Mach, L. & Steinkellner, H. The Golgi localization of Arabidopsis thaliana β1,2-xylosyltransferase in plant cells is dependent on its cytoplasmic and transmembrane sequences. Plant Mol. Biol. 50, 273–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Fitchette, A. C. et al. Biosynthesis and immunolocalization of Lewis a-containing N-glycans in the plant cell. Plant Physiol. 121, 333–344 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keegstra, K. & Raikhel, N. Plant glycosyltransferases. Curr. Opin. Plant Biol. 4, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. De Matteis, M. A. & Morrow, J. S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113, 2331–2343 (2000).

    CAS  PubMed  Google Scholar 

  12. Kondoh, K., Torii, S. & Nishida, E. Control of MAP kinase signaling to the nucleus. Chromosoma 114, 86–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Saint- Jore-Dupas, C. et al. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18, 3182–3200 (2006).

    Article  CAS  Google Scholar 

  14. Rabouille, C. et al. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108, 1617–1627 (1995).

    CAS  PubMed  Google Scholar 

  15. Klumperman, J. The growing Golgi: in search of its independence. Nature Cell Biol. 2, E217–E219 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. van Meel, E. & Klumperman, J. Imaging and imagination: understanding the endo-lysosomal system. Histochem. Cell Biol. 129, 253–266 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y. D. & Schumacher, K. Arabidopsis vacuolar H-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis. Plant Cell 18, 715–730 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nickel, W. & Rabouille, C. Mechanisms of regulated unconventional protein secretion. Nature Rev. Mol. Cell Biol. 10, 148–155 (2009).

    Article  CAS  Google Scholar 

  19. Bannykh, S. I., Rowe, T. & Balch, W. E. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135, 19–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Hammond, A. T. & Glick, B. S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaywitz, D. A., Orci, L., Ravazzola, M., Swaroop, A. & Kaiser, C. A. Human SEC13Rp functions in yeast and is located on transport vesicles budding from the endoplasmic reticulum. J. Cell Biol. 128, 769–777 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Rossanese, O. W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69–81 (1999). Demonstrates that P. pastoris and S. cerevisiae have distinct ERES and Golgi organizations and proposes a model in which Golgi organization correlates with ERES organization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horton, A. C. & Ehlers, M. D. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188–6199 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. daSilva, L. L. et al. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16, 1753–1771 (2004). Shows that ERES and motile Golgi stacks form a secretory unit system that is unique to eukaryotic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Connerly, P. L. et al. Sec16 is a determinant of transitional ER organization. Curr. Biol. 15, 1439–1447 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Watson, P., Townley, A. K., Koka, P., Palmer, K. J. & Stephens, D. J. Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic 7, 1678–1687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miller, E. A. & Barlowe, C. Regulation of coat assembly — sorting things out at the ER. Curr. Opin. Cell Biol. 22, 447–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lorente-Rodriguez, A. & Barlowe, C. Entry and exit mechanisms at the cis-face of the Golgi complex. Cold Spring Harb. Perspect. Biol. 11 Apr 2011 (doi:10.1101/cshperspect.a005207).

  29. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allan, B. B., Moyer, B. D. & Balch, W. E. Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science 289, 444–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Cai, H. et al. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445, 941–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Zink, S., Wenzel, D., Wurm, C. A. & Schmitt, H. D. A link between ER tethering and COP-I vesicle uncoating. Dev. Cell 17, 403–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Bonfanti, L. et al. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993–1003 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895–907 (1994). Reports, for the first time, that COPII-coated transport intermediates exist and reconstitutes COPII carriers in vitro.

    Article  CAS  PubMed  Google Scholar 

  35. Stagg, S. M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Donnell, J., Maddox, K. & Stagg, S. The structure of a COPII tubule. J. Struct. Biol. 173, 358–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Stagg, S. M. et al. Structure of the Sec13/31 COPII coat cage. Nature 439, 234–238 (2006). Reveals the three-dimensional reconstruction of SEC13–SEC31 cages at 30 Å resolution that defined a flexible cuboctahedron geometry of the COPII outer coat.

    Article  CAS  PubMed  Google Scholar 

  38. Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Bhattacharya, N., J., O. D. & Stagg, S. M. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 420, 324–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeuschner, D. et al. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nature Cell Biol. 8, 377–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bacia, K. et al. Multibudded tubules formed by COPII on artificial liposomes. Sci. Rep. 1, 17 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nature Genet. 38, 1192–1197 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lang, M. R., Lapierre, L. A., Frotscher, M., Goldenring, J. R. & Knapik, E. W. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nature Genet. 38, 1198–1203 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Fromme, J. C. et al. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell 13, 623–634 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones, B. et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nature Genet. 34, 29–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Silvain, M. et al. Anderson's disease (chylomicron retention disease): a new mutation in the SARA2 gene associated with muscular and cardiac abnormalities. Clin. Genet. 74, 546–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Jin, L. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saito, K. et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136, 891–902 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Saito, K. et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22, 2301–2308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keegstra, K. Plant cell walls. Plant Physiol. 154, 483–486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanton, S. L., Chatre, L., Renna, L., Matheson, L. A. & Brandizzi, F. De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated. Plant Physiol. 143, 1640–1650 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farhan, H., Weiss, M., Tani, K., Kaufman, R. J. & Hauri, H. P. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J. 27, 2043–2054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997). A pioneering study that uses fluorescent protein technology to visualize ER export of secretory cargo along microtubules in live mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  55. Stephens, D. J. Functional coupling of microtubules to membranes — implications for membrane structure and dynamics. J. Cell Sci. 125, 2795–2804 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Mogelsvang, S., Gomez-Ospina, N., Soderholm, J., Glick, B. S. & Staehelin, L. A. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol. Biol. Cell 14, 2277–2291 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ward, T. H. & Brandizzi, F. Dynamics of proteins in Golgi membranes: comparisons between mammalian and plant cells highlighted by photobleaching techniques. Cell. Mol. Life Sci. 61, 172–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Nebenfuhr, A. et al. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 1127–1142 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boevink, P. et al. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15, 441–447 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Bard, F. et al. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439, 604–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. He, C. Y. et al. Golgi duplication in Trypanosoma brucei. J. Cell Biol. 165, 313–321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hager, K. M., Striepen, B., Tilney, L. G. & Roos, D. S. The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. J. Cell Sci. 112, 2631–2638 (1999).

    CAS  PubMed  Google Scholar 

  63. Avisar, D., Prokhnevsky, A. I., Makarova, K. S., Koonin, E. V. & Dolja, V. V. Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol. 146, 1098–1108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peremyslov, V. V., Prokhnevsky, A. I., Avisar, D. & Dolja, V. V. Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis. Plant Physiol. 146, 1109–1116 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sparkes, I. A., Teanby, N. A. & Hawes, C. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: a genetic tool for the next generation. J. Exp. Bot. 59, 2499–2512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hawes, C. & Satiat-Jeunemaitre, B. The plant Golgi apparatus — going with the flow. Biochim. Biophys. Acta 1744, 93–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Donohoe, B. S. et al. Cis-Golgi cisternal assembly and biosynthetic activation occur sequentially in plants and algae. Traffic 14, 551–567 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bentley, M. et al. SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J. Biol. Chem. 281, 38825–38833 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Xu, D. & Hay, J. C. Reconstitution of COPII vesicle fusion to generate a pre-Golgi intermediate compartment. J. Cell Biol. 167, 997–1003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Sitia, R. & Meldolesi, J. Endoplasmic reticulum: a dynamic patchwork of specialized subregions. Mol. Biol. Cell 3, 1067–1072 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mellman, I. & Simons, K. The Golgi complex: in vitro veritas? Cell 68, 829–840 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klumperman, J. et al. The recycling pathway of protein ERGIC-53 and dynamics of the ER–Golgi intermediate compartment. J. Cell Sci. 111, 3411–3425 (1998).

    CAS  PubMed  Google Scholar 

  74. Appenzeller-Herzog, C. & Hauri, H. P. The ER–Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci. 119, 2173–2183 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Martinez-Menarguez, J. A., Geuze, H. J., Slot, J. W. & Klumperman, J. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98, 81–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Breuza, L. et al. Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32, a new cycling protein that interacts with human Erv46. J. Biol. Chem. 279, 47242–47253 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Scales, S. J., Pepperkok, R. & Kreis, T. E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell 90, 1137–1148 (1997). Demonstrates in vivo a temporal uncoupling of the roles of the COPI and COPII machineries in bidirectional membrane traffic at the ER–Golgi interface in mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  78. Stephens, D. J. & Pepperkok, R. Illuminating the secretory pathway: when do we need vesicles? J. Cell Sci. 114, 1053–1059 (2001).

    CAS  PubMed  Google Scholar 

  79. Lippincott-Schwartz, J., Cole, N. B., Marotta, A., Conrad, P. A. & Bloom, G. S. Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J. Cell Biol. 128, 293–306 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Roghi, C. & Allan, V. J. Dynamic association of cytoplasmic dynein heavy chain 1a with the Golgi apparatus and intermediate compartment. J. Cell Sci. 112, 4673–4685 (1999).

    CAS  PubMed  Google Scholar 

  81. Beck, K. A. Spectrins and the Golgi. Biochim. Biophys. Acta 1744, 374–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, J. L. et al. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. J. Cell Biol. 169, 383–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ben-Tekaya, H., Miura, K., Pepperkok, R. & Hauri, H. P. Live imaging of bidirectional traffic from the ERGIC. J. Cell Sci. 118, 357–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Sparkes, I. A., Ketelaar, T., Ruijter, N. C. & Hawes, C. Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10, 567–571 (2009). Uses laser-trap technology in live cells and demonstrates that the ER and the Golgi are physically attached in highly vacuolated plant cells.

    Article  CAS  PubMed  Google Scholar 

  85. Hanton, S. L., Matheson, L. A., Chatre, L. & Brandizzi, F. Dynamic organization of COPII coat proteins at endoplasmic reticulum export sites in plant cells. Plant J. 57, 963–974 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Stefano, G. et al. In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J. 46, 95–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Hanton, S. L. et al. Plant Sar1 isoforms with near-identical protein sequences exhibit different localisations and effects on secretion. Plant Mol. Biol. 67, 283–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Wei, T. & Wang, A. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J. Virol. 82, 12252–12264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Robinson, D. G., Herranz, M. C., Bubeck, J., Pepperkok, R. & Ritzenthaler, C. Membrane dynamics in the early secretory pathway. Crit. Rev. Plant Sci. 26, 199–225 (2007).

    Article  CAS  Google Scholar 

  90. Sieben, C., Mikosch, M., Brandizzi, F. & Homann, U. Interaction of the K+-channel KAT1 with the coat protein complex II coat component Sec24 depends on a di-acidic endoplasmic reticulum export motif. Plant J. 56, 997–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Osterrieder, A., Hummel, E., Carvalho, C. M. & Hawes, C. Golgi membrane dynamics after induction of a dominant-negative mutant Sar1 GTPase in tobacco. J. Exp. Bot. 61, 405–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Hawes, C., Osterrieder, A., Hummel, E. & Sparkes, I. The plant ER–Golgi interface. Traffic 9, 1571–1580 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Schoberer, J. et al. Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Traffic 10, 101–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Faso, C. et al. A missense mutation in the Arabidopsis COPII coat protein Sec24A induces the formation of clusters of the endoplasmic reticulum and Golgi apparatus. Plant Cell 21, 3655–3671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ito, Y. et al. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol. Biol. Cell 23, 3203–3214 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lerich, A. et al. ER import sites and their relationship to ER exit sites: a new model for bidirectional ER–Golgi transport in higher plants. Front. Plant Sci. 3, 143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Langhans, M., Meckel, T., Kress, A., Lerich, A. & Robinson, D. G. ERES (ER exit sites) and the 'secretory unit concept'. J. Microsc. 247, 48–59 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Hawes, C. The ER/Golgi interface — is there anything in-between? Front. Plant Sci. 3, 73 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Donohoe, B. S., Kang, B. H. & Staehelin, L. A. Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc. Natl Acad. Sci. 104, 163–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Wright, G. D., Arlt, J., Poon, W. C. & Read, N. D. Optical tweezer micromanipulation of filamentous fungi. Fungal Genet. Biol. 44, 1–13 (2007).

    Article  PubMed  Google Scholar 

  101. Witte, K. et al. TFG-1 function in protein secretion and oncogenesis. Nature Cell Biol. 13, 550–558 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Lord, C. et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Craig, S. & Staehelin, L. A. High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur. J. Cell Biol. 46, 81–93 (1988).

    CAS  PubMed  Google Scholar 

  104. Ritzenthaler, C. et al. Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14, 237–261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Staehelin, L. A. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 11, 1151–1165 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Kang, B. H. & Staehelin, L. A. ER-to-Golgi transport by COPII vesicles in Arabidopsis involves a ribosome-excluding scaffold that is transferred with the vesicles to the Golgi matrix. Protoplasma 234, 51–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Faini, M. et al. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 336, 1451–1454 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Latijnhouwers, M., Hawes, C. & Carvalho, C. Holding it all together? Candidate proteins for the plant Golgi matrix. Curr. Opin. Plant Biol. 8, 632–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Osterrieder, A. Tales of tethers and tentacles: golgins in plants. J. Microsc. 247, 68–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Puthenveedu, M. A., Bachert, C., Puri, S., Lanni, F. & Linstedt, A. D. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi–enzyme distribution. Nature Cell Biol. 8, 238–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Iwata, Y. & Koizumi, N. Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci. 17, 720–727 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Bielli, A. et al. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171, 919–924 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yoshihisa, T., Barlowe, C. & Schekman, R. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Science 259, 1466–1468 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419, 271–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Thor, F., Gautschi, M., Geiger, R. & Helenius, A. Bulk flow revisited: transport of a soluble protein in the secretory pathway. Traffic 10, 1819–1830 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Kuehn, M. J., Herrmann, J. M. & Schekman, R. COPII–cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Giraudo, C. G. & Maccioni, H. J. Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Mol. Biol. Cell 14, 3753–3766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wendeler, M. W., Paccaud, J. P. & Hauri, H. P. Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum. EMBO Rep. 8, 258–264 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Miller, E. A. et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114, 497–509 (2003). Identifies multiple independent cargo-binding sites in the COPII coat subunit SEC24 and describes the plasticity of this adaptor complex in selecting multiple cargo molecules with distinct sorting signals.

    Article  CAS  PubMed  Google Scholar 

  120. Bi, X., Mancias, J. D. & Goldberg, J. Insights into COPII coat nucleation from the structure of Sec23. Sar1 complexed with the active fragment of Sec31. Dev. Cell 13, 635–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Copic, A., Latham, C. F., Horlbeck, M. A., D'Arcangelo, J. G. & Miller, E. A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335, 1359–1362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Matsuoka, K. et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell 93, 263–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Routledge, K. E., Gupta, V. & Balch, W. E. Emergent properties of proteostasis–COPII coupled systems in human health and disease. Mol. Membr. Biol. 27, 385–397 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Waters, M. G., Griff, I. C. & Rothman, J. E. Proteins involved in vesicular transport and membrane fusion. Curr. Opin. Cell Biol. 3, 615–620 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Eugster, A., Frigerio, G., Dale, M. & Duden, R. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J. 19, 3905–3917 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Szul, T. & Sztul, E. COPII and COPI traffic at the ER–Golgi interface. Physiol. (Bethesda) 26, 348–364 (2011).

    CAS  Google Scholar 

  128. Shiba, Y. & Randazzo, P. A. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs. Histol. Histopathol. 27, 1143–1153 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wieland, F. T., Gleason, M. L., Serafini, T. A. & Rothman, J. E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300 (1987).

    Article  CAS  PubMed  Google Scholar 

  130. Pelham, H. R. Evidence that luminal ER proteins are sorted from secreted proteins in a post-ER compartment. EMBO J. 7, 913–918 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Doms, R. W., Russ, G. & Yewdell, J. W. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109, 61–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S. & Klausner, R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813 (1989). The first demonstration that the Golgi is not a stable entity but that its integrity depends on constant membrane cycling with the ER.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Niu, T. K., Pfeifer, A. C., Lippincott-Schwartz, J. & Jackson, C. L. Dynamics of GBF1, a brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol. Biol. Cell 16, 1213–1222 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Richter, S. et al. Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature 448, 488–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Peyroche, A. et al. Brefeldin A acts to stabilize an abortive ARF-GDP–Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell 3, 275–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Moyer, B. D., Allan, B. B. & Balch, W. E. Rab1 interaction with a GM130 effector complex regulates COPII vesicle cis-Golgi tethering. Traffic 2, 268–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Shorter, J., Beard, M. B., Seemann, J., Dirac-Svejstrup, A. B. & Warren, G. Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J. Cell Biol. 157, 45–62 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sacher, M. et al. TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. Mol. Cell 7, 433–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Cai, Y. et al. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133, 1202–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hay, J. C., Chao, D. S., Kuo, C. S. & Scheller, R. H. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell 89, 149–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. Rowe, T., Dascher, C., Bannykh, S., Plutner, H. & Balch, W. E. Role of vesicle-associated syntaxin 5 in the assembly of pre-Golgi intermediates. Science 279, 696–700 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Xu, D., Joglekar, A. P., Williams, A. L. & Hay, J. C. Subunit structure of a mammalian ER/Golgi SNARE complex. J. Biol. Chem. 275, 39631–39639 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Parlati, F. et al. Topological restriction of SNARE-dependent membrane fusion. Nature 407, 194–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Yamaguchi, T. et al. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell 2, 295–305 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Bhattacharya, N., O'Donnell, J. & Stagg, S. M. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 420, 324–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.B is supported by grants from the US National Institutes of Health (R01 GM101038), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. DOE (DE-FG02-91ER20021), NASA (NNX12AN71G) and the National Science Foundation (MCB 0948584; 1243792). C.B. acknowledges support from the US National Institutes of Health (R01 GM52549).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Barlowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Federica Brandizzi's homepage

Charles Barlowe's homepage

Electron Microscopy Data Bank (EMDataBank)

EMDB1232

Glossary

Anterograde transport

Membrane traffic pathway in which a linear assembly of membrane-bound compartments facilitates cargo movement towards the cell surface.

Retrograde transport

Membrane traffic pathway in which a linear assembly of membrane-bound compartments facilitates cargo movement towards the ER.

ER exit sites

(ERES). Specialized regions on the surface of endoplasmic reticulum (ER) membranes where coat protein complex II (COPII) coat subunits are recruited and assembled into COPII carrier vesicles that transport secretory cargo from the ER.

Unfolded protein response

(UPR). A system of ancestral signalling pathways that are activated upon increased secretory protein load in the endoplasmic reticulum to ensure maintenance of cellular homeostasis.

ER–Golgi intermediate compartment

(ERGIC). An organelle that is visible in most mammalian cells at the interface between the endoplasmic reticulum (ER) and the Golgi and that is implicated in cargo concentration and sorting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandizzi, F., Barlowe, C. Organization of the ER–Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 14, 382–392 (2013). https://doi.org/10.1038/nrm3588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing