Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of microRNA function in somatic stem cell proliferation and differentiation

Key Points

  • MicroRNAs (miRNAs) constitute an essential part of the gene networks that drive proliferation, viability and differentiation of stem and progenitor cells across different somatic lineages.

  • Upstream of miRNAs is a network of cell type-specific transcription factors that function together with epigenetic regulators to tightly regulate miRNA levels spatially and temporally. miRNA levels are further fine-tuned through post-transcriptional mechanisms regulating their processing to the mature form as well as their stability.

  • Downstream of miRNAs are large networks of mRNA targets that influence cell fate choice. Through suppression of these targets, the miRNAs can silence previously active or alternative gene programmes during cell fate transitions.

  • The impact of any one miRNA on a particular mRNA target is influenced by multiple factors, including the number of available target sites within the mRNA, targeting of the mRNA simultaneously by other miRNAs and competition between targets for the same miRNA.

  • Availability of and affinity to miRNA target sites within mRNAs is influenced by factors such as alternative splicing, alternative polyadenylation and RNA-binding protein synergism or antagonism to miRNA binding.

Abstract

microRNAs (miRNAs) are important modulators of development. Owing to their ability to simultaneously silence hundreds of target genes, they have key roles in large-scale transcriptomic changes that occur during cell fate transitions. In somatic stem and progenitor cells — such as those involved in myogenesis, haematopoiesis, skin and neural development — miRNA function is carefully regulated to promote and stabilize cell fate choice. miRNAs are integrated within networks that form both positive and negative feedback loops. Their function is regulated at multiple levels, including transcription, biogenesis, stability, availability and/or number of target sites, as well as their cooperation with other miRNAs and RNA-binding proteins. Together, these regulatory mechanisms result in a refined molecular response that enables proper cellular differentiation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of miRNA biogenesis and function occurs at multiple levels.
Figure 2: Lineage-restricted stem and progenitor cell differentiation during the development of four model lineages.
Figure 3: miRNA regulation during myogenesis.
Figure 4: miRNAs regulate cell fate choices and differentiation during haematopoiesis.
Figure 5: miRNAs regulate the development of the epidermis and hair follicle.
Figure 6: miRNAs regulate the development of neural cells.

Similar content being viewed by others

References

  1. Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nature Rev. GMo. Cell Biol. 15, 509–524 (2014).

    CAS  Google Scholar 

  2. Babiarz, J. E. & Blelloch, R. Small RNAs – their biogenesis, regulation and function in embryonic stem cells. StemBook (2009).

  3. Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet. 35, 215–217 (2003).

    CAS  PubMed  Google Scholar 

  4. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genet. 39, 380–385 (2007).

    CAS  PubMed  Google Scholar 

  5. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet. 12, 99–110 (2011).

    CAS  PubMed  Google Scholar 

  6. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Judson, R. L., Greve, T. S., Parchem, R. J. & Blelloch, R. MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nature Struct. Mol. Biol. 20, 1227–1235 (2013).

    CAS  Google Scholar 

  8. Park, C. Y. et al. A resource for the conditional ablation of microRNAs in the mouse. Cell Rep. 1, 385–391 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Thornton, J. E. & Gregory, R. I. How does Lin28 let-7 control development and disease? Trends Cell Biol. 22, 474–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Piskounova, E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147, 1066–1079 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Buckingham, M. et al. The formation of skeletal muscle: from somite to limb. J. Anat. 202, 59–68 (2003).

    PubMed  PubMed Central  Google Scholar 

  13. Yaffe, D. & Saxel, O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725–727 (1977).

    CAS  PubMed  Google Scholar 

  14. Rosenberg, M. I., Georges, S. A., Asawachaicharn, A., Analau, E. & Tapscott, S. J. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J. Cell Biol. 175, 77–85 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S. & Lodish, H. F. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl Acad. Sci. USA 103, 8721–8726 (2006). Provides examples of how master transcriptional regulators of a specific cell fate act upstream of tissue-specific miRNAs.

    CAS  PubMed  Google Scholar 

  16. Sweetman, D. et al. Specific requirements of MRFs for the expression of muscle specific microRNAs miR-1, miR-206 and miR-133. Dev. Biol. 321, 491–499 (2008).

    CAS  PubMed  Google Scholar 

  17. Small, E. M. et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl Acad. Sci. USA 107, 4218–4223 (2010).

    CAS  PubMed  Google Scholar 

  18. Yeung, F., Chung, E., Guess, M. G., Bell, M. L. & Leinwand, L. A. Myh7b/miR-499 gene expression is transcriptionally regulated by MRFs and Eos. Nucleic Acids Res. 40, 7303–7318 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van Rooij, E. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17, 662–673 (2009). Study showing how two miRNAs cooperate to promote further maturation of muscle fibres into slow fibres versus fast fibres.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Rourke, J. R. et al. Essential role for Dicer during skeletal muscle development. Dev. Biol. 311, 359–368 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goljanek-Whysall, K. et al. MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc. Natl Acad. Sci. USA 108, 11936–11941 (2011).

    CAS  PubMed  Google Scholar 

  22. Dey, B. K., Gagan, J. & Dutta, A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol. Cell. Biol. 31, 203–214 (2011).

    CAS  PubMed  Google Scholar 

  23. Boutet, S. C. et al. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 10, 327–336 (2012). Provides a specific example of how miRNA activity can be controlled by APA in skeletal muscle subsets.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, J. F. et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 190, 867–879 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cardinali, B. et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS ONE 4, e7607 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. Sarkar, S., Dey, B. K. & Dutta, A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol. Biol. Cell 21, 2138–2149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, J.-F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228–233 (2005).

    PubMed  Google Scholar 

  28. Winbanks, C. E. et al. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J. Biol. Chem. 286, 13805–13814 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Juan, A. H., Kumar, R. M., Marx, J. G., Young, R. A. & Sartorelli, V. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol. Cell 36, 61–74 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dormoy-Raclet, V. et al. HuR and miR-1192 regulate myogenesis by modulating the translation of HMGB1 mRNA mRNA. Nat Comms 4 (2013).

  32. Bak, R. O. & Mikkelsen, J. G. miRNA sponges: soaking up miRNAs for regulation of gene expression. WIREs RNA 5, 317–333 (2014).

    CAS  PubMed  Google Scholar 

  33. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kallen, A. N. et al. The imprinted H19 LncRNA antagonizes Let-7 microRNAs. Mol. Cell 52, 101–112 (2013).

    CAS  PubMed  Google Scholar 

  35. Orkin, S. H. Diversification of haematopoietic stem cells to specific lineages. Nature Rev. Genet. 1, 57–64 (2000).

    CAS  PubMed  Google Scholar 

  36. Dore, L. C. et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc. Natl Acad. Sci. USA 105, 3333–3338 (2008).

    CAS  PubMed  Google Scholar 

  37. Zhu, Y. et al. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res. 41, 4129–4143 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Barde, I. et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 340, 350–353 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Crichton, J. H., Dunican, D. S., MacLennan, M., Meehan, R. R. & Adams, I. R. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell. Mol. Life Sci. 71, 1581–1605 (2014).

    CAS  PubMed  Google Scholar 

  40. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123, 819–831 (2005). Study showing how the interplay between an miRNA and two transcription factors can feed back to modulate levels of expression of the miRNA.

    CAS  PubMed  Google Scholar 

  41. Copley, M. R. et al. The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal hematopoietic stem cells. Nature Cell Biol. 15, 916–925 (2013).

    CAS  PubMed  Google Scholar 

  42. Emmrich, S. et al. miR-99a/100125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 28, 858–874 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuan, J., Nguyen, C. K., Liu, X., Kanellopoulou, C. & Muljo, S. A. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 335, 1195–1200 (2012). Demonstrates that let-7 and LIN28 control the transition between fetal and adult haematopoiesis, a theme that is also seen in neurogenesis, as described in this Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Senyuk, V. et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proc. Natl Acad. Sci. USA 110, 5594–5599 (2013).

    CAS  PubMed  Google Scholar 

  45. Lu, J. et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14, 843–853 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, S. et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc. Natl Acad. Sci. USA 107, 14229–14234 (2010).

    CAS  PubMed  Google Scholar 

  47. O'Connell, R. M. et al. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc. Natl Acad. Sci. USA 107, 14235–14240 (2010).

    CAS  PubMed  Google Scholar 

  48. Ooi, A. G. L. et al. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc. Natl Acad. Sci. USA 107, 21505–21510 (2010).

    CAS  PubMed  Google Scholar 

  49. Koralov, S. B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008).

    CAS  PubMed  Google Scholar 

  50. Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008).

    CAS  PubMed  Google Scholar 

  51. Patrick, D. M. et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev. 24, 1614–1619 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dice. Science 328, 1694–1698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cheloufi, S., Santos, Dos, C. O., Chong, M. M. W. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rasmussen, K. D. et al. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 207, 1351–1358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sturgeon, C. M. et al. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev. Cell 23, 45–57 (2012). Example of miRNAs functioning in the niche cells indirectly affecting primitive HSC development.

    CAS  PubMed  Google Scholar 

  56. Raaijmakers, M. H. G. P. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fuchs, E. Scratching the surface of skin development. Nature 445, 834–842 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, D. et al. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nature Cell Biol. 15, 1153–1163 (2013). Example of a single miRNA targeting multiple components of a signalling pathway synergizing to promote skin stem cell proliferation.

    CAS  PubMed  Google Scholar 

  59. Zhang, L., Stokes, N., Polak, L. & Fuchs, E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8, 294–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jackson, S. J. et al. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development 140, 1882–1891 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Antonini, D. et al. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J. Investig. Dermatol. 130, 1249–1257 (2010).

    CAS  PubMed  Google Scholar 

  62. Andl, T. et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr. Biol. 16, 1041–1049 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yi, R. et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genet. 38, 356–362 (2006).

    CAS  PubMed  Google Scholar 

  64. Teta, M. et al. Inducible deletion of epidermal Dicer and Drosha reveals multiple functions for miRNAs in postnatal skin. Development 139, 1405–1416 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, J. et al. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc. Natl Acad. Sci. USA 105, 19300–19305 (2008).

    CAS  PubMed  Google Scholar 

  66. Lena, A. M. et al. miR-203 represses 'stemness' by repressing DeltaNp63. Cell Death Differ. 15, 1187–1195 (2008).

    CAS  PubMed  Google Scholar 

  67. Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S.-K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dill, H., Linder, B., Fehr, A. & Fischer, U. Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev. 26, 25–30 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Struct. Mol. Biol. 16, 365–371 (2009). Example of a positive feedback loop that leads to a switch from TLX repression of miR-9 in progenitors and miR-9 repression of TLX with differentiation.

    CAS  Google Scholar 

  70. Sun, G. et al. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nat. Comms 2, 529 (2011).

    Google Scholar 

  71. Liu, C. et al. Epigenetic Regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6, 433–444 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, C. et al. An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS ONE 8, e51436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. De Pietri Tonelli, D. et al. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kawase-Koga, Y., Otaegi, G. & Sun, T. Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev. Dyn. 238, 2800–2812 (2009).

    PubMed  PubMed Central  Google Scholar 

  75. Dugas, J. C. et al. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. Neuron 65, 597–611 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao, X. et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65, 612–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheng, L.-C., Pastrana, E., Tavazoie, M. & Doetsch, F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neurosci. 12, 399–408 (2009).

    CAS  PubMed  Google Scholar 

  78. Zhao, C. et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc. Natl Acad. Sci. USA 107, 1876–1881 (2010).

    CAS  PubMed  Google Scholar 

  79. Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C. T. & Terskikh, A. V. SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc. Natl Acad. Sci. USA 110, E3017–E3026 (2013).

    CAS  PubMed  Google Scholar 

  80. Bonev, B., Pisco, A. & Papalopulu, N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev. Cell 20, 19–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoo, A. S., Staahl, B. T., Chen, L. & Crabtree, G. R. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646 (2009). Demonstrates how miRNAs can drive activation of the neuronal gene expression programme by repressing chromatin remodellers of the progenitor cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lessard, J. et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007). Demonstrates how miRNAs can affect global cell type-specific splicing by inhibiting a splicing regulator.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nishino, J. et al. A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties. eLife 2, e00924–e00924 (2013).

    PubMed  PubMed Central  Google Scholar 

  85. Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135, 227–239 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Åkerblom, M. et al. microRNA-125 distinguishes developmentally generated and adult-born olfactory bulb interneurons. Development 141, 1580–1588 (2014).

    PubMed  Google Scholar 

  87. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  88. Naka-Kaneda, H. et al. The miR-17/106-p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells. Proc. Natl Acad. Sci. USA 111, 1604–1609 (2014).

    CAS  PubMed  Google Scholar 

  89. Judson, R. L., Babiarz, J. E., Venere, M. & Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotech. 27, 459–461 (2009).

    CAS  Google Scholar 

  90. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotech. 29, 443–448 (2011).

    CAS  Google Scholar 

  91. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nam, Y.-J. et al. Reprogramming of human fibroblasts toward a cardiac fate. Proc. Natl Acad. Sci. USA 110, 5588–5593 (2013).

    CAS  PubMed  Google Scholar 

  94. Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA 102, 10898–10903 (2005).

    CAS  PubMed  Google Scholar 

  95. Lynn, F. C. et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56, 2938–2945 (2007).

    CAS  PubMed  Google Scholar 

  96. Gaur, T. et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev. Biol. 340, 10–21 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kobayashi, T. et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl Acad. Sci. USA 105, 1949–1954 (2008).

    CAS  PubMed  Google Scholar 

  98. Mudhasani, R. et al. Dicer is required for the formation of white but not brown adipose tissue. J. Cell. Physiol. 226, 1399–1406 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317–330 (2011).

    CAS  PubMed  Google Scholar 

  100. Zehir, A., Hua, L. L., Maska, E. L., Morikawa, Y. & Cserjesi, P. Dicer is required for survival of differentiating neural crest cells. Dev. Biol. 340, 459–467 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Michon, F., Tummers, M., Kyyrönen, M., Frilander, M. J. & Thesleff, I. Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev. Biol. 340, 355–368 (2010).

    CAS  PubMed  Google Scholar 

  102. Suh, N. et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Shenoy, A. & Blelloch, R. microRNA induced transdifferentiation. F1000 Biol. Rep. 4, 2 (2012).

    Google Scholar 

  104. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Blelloch laboratory, especially A. Chen, J. Freimer, R. Krishnakumar and M. Shveygert for helpful discussions and comments. This work was funded by a CIRM training grant TG2-01153 (A.S.) and grants to R.H.B. from the US National Institutes of Health (R01 NS057221 and GM101180) and the California Institute of Regenerative Medicine (New Faculty Award, RN2-00906-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Blelloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Argonaute proteins

A family of proteins that function as effectors of microRNA (miRNA) function. Along with other proteins, such as GW182, they form a complex with miRNAs and bind target mRNAs to promote translational inhibition or mRNA degradation.

Mitophagy

A form of macroautophagy that degrades mitochondria. Autophagosomes enclose whole mitochondria and fuse with the lysosome, leading to degradation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenoy, A., Blelloch, R. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15, 565–576 (2014). https://doi.org/10.1038/nrm3854

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing