Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond

An Erratum to this article was published on 25 July 2012

This article has been updated

Key Points

  • The voltage-gated calcium channels (VGCCs) consist of three subfamilies (CaV1, CaV2 and CaV3) that are defined by their pore-forming α1 subunits. The CaV1 and CaV2 families also contain the auxiliary α2δ and β subunits.

  • α2δ and β subunits increase the expression of functional calcium channels at the plasma membrane by different mechanisms and also influence the channels' biophysical properties. The β subunit binds to an intracellular linker on the α1 subunits and reduces their endoplasmic reticulum-associated proteasomal degradation, allowing forward trafficking of the channels, whereas the α2δ subunit is likely to act at a later stage in trafficking, in a process involving the VWA domain.

  • Accumulating evidence indicates that both the α2δ and the β subunits of VGCCs may also have roles that are not directly linked to calcium channel function. Some of these roles are associated with targeting or tethering the channels to specific microdomains, in particular presynaptic active zones, but other roles seem not to be associated with calcium channels.

  • The additional roles of the α2δ subunits involve interactions with other proteins, such as extracellular matrix and other membrane proteins. Indeed, this subunit may be involved in establishing the morphology of synapses.

  • Evidence indicates that specific β subunit splice variants may act in the nucleus as transcriptional regulators.

Abstract

The voltage-gated calcium channel α2δ and β subunits are traditionally considered to be auxiliary subunits that enhance channel trafficking, increase the expression of functional calcium channels at the plasma membrane and influence the channels' biophysical properties. Accumulating evidence indicates that these subunits may also have roles in the nervous system that are not directly linked to calcium channel function. For example, β subunits may act as transcriptional regulators, and certain α2δ subunits may function in synaptogenesis. The aim of this Review is to examine both the classic and novel roles for these auxiliary subunits in voltage-gated calcium channel function and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution and roles of calcium channels in neurons.
Figure 2: Voltage-gated calcium channel subunits.
Figure 3: Domains in α2δ subunits.
Figure 4: New roles for α2δ subunits may affect neuronal function independently from their role as calcium channel subunits.
Figure 5: β subunit interactions and effects on calcium channel.
Figure 6: Overview of the effects of α2δ and β subunits on calcium channel trafficking.

Similar content being viewed by others

Change history

  • 25 July 2012

    On page 551 of this article, the subunit labelled 'β2δ' in figure 6 should have been labelled 'α2δ'.

References

  1. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Dolphin, A. C. A short history of voltage-gated calcium channels. Br. J. Pharmacol. 147 (Suppl. 1), S56–S62 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Catterall, W. A., Perez-Reyes, E., Snutch, T. P. & Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Letts, V. A. et al. The mouse stargazer gene encodes a neuronal Ca2+ channel γ subunit. Nature Genet. 19, 340–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, R. S., Deng, T. C., Garcia, T., Sellers, Z. M. & Best, P. M. Calcium channel γ subunits: a functionally diverse protein family. Cell Biochem. Biophys. 47, 178–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Müller, C. S. et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl Acad. Sci. USA 107, 14950–14957 (2010). A study providing a comprehensive picture of the proteins that interact with N-type calcium channels.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moss, F. J. et al. The novel product of a five-exon stargazin-related gene abolishes CaV2.2 calcium channel expression. EMBO J. 21, 1514–1523 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waithe, D., Ferron, L. & Dolphin, A. C. Stargazin-related protein γ7 is associated with signalling endosomes in superior cervical neurons and modulates neurite outgrowth. J. Cell Sci. 124, 2049–2057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Platzer, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Bech-Hansen, N. T. et al. Loss-of-function mutations in a calcium channel α1 subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet. 19, 264–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Mansergh, F. et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum. Mol. Genet. 14, 3035–3046 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Zuccotti, A. et al. Structural and functional differences between L-type calcium channels: crucial issues for future selective targeting. Trends Pharmacol. Sci. 32, 366–375 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Striessnig, J. & Koschak, A. Exploring the function and pharmacotherapeutic potential of voltage-gated Ca2+ channels with gene knockout models. Channels (Austin.) 2, 233–251 (2008).

    Article  Google Scholar 

  16. Catterall, W. A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Shin, H. S., Cheong, E. J., Choi, S., Lee, J. & Na, H. S. T-type Ca2+ channels as therapeutic targets in the nervous system. Curr. Opin. Pharmacol. 8, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Mangoni, M. E. et al. Functional role of L-type CaV1.3 Ca2+ channels in cardiac pacemaker activity. Proc. Natl Acad. Sci. USA 100, 5543–5548 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pichler, M. et al. β subunit heterogeneity in neuronal L-type Ca2+ channels. J. Biol. Chem. 272, 13877–13882 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Witcher, D. R. et al. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 261, 486–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, H. et al. Identification of three subunits of the high affinity ω-conotoxin MVIIC-sensitive Ca2+ channel. J. Biol. Chem. 271, 13804–13810 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Jones, L. P., Wei, S. K. & Yue, D. T. Mechanism of auxiliary subunit modulation of neuronal α1E calcium channels. J. Gen. Physiol. 112, 125–143 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davies, A. et al. Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol. Sci. 28, 220–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Whittaker, C. A. & Hynes, R. O. Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol. Biol. Cell 13, 3369–3387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klugbauer, N., Marais, E. & Hofmann, F. Calcium channel α2δ subunits: differential expression, function, and drug binding. J. Bioenerg. Biomembr. 35, 639–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H.-L., Kim, H., Lee, P., King, R. G. & Chin, H. Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel α2 subunit. Proc. Natl Acad. Sci. USA 89, 3251–3255 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Angelotti, T. & Hofmann, F. Tissue-specific expression of splice variants of the mouse voltage-gated calcium channel α2/δ subunit. FEBS Lett. 397, 331–337 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Barclay, J. & Rees, M. Genomic organization of the mouse and human α2δ2 voltage-dependent calcium channel subunit genes. Mamm. Genome 11, 1142–1144 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Qin, N., Yagel, S., Momplaisir, M. L., Codd, E. E. & D'Andrea, M. R. Molecular cloning and characterization of the human voltage-gated calcium channel α2δ-4 subunit. Mol. Pharmacol. 62, 485–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Arikkath, J. & Campbell, K. P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. De Jongh, K. S., Warner, C. & Catterall, W. A. Subunits of purified calcium channels. α2 and δ are encoded by the same gene. J. Biol. Chem. 265, 14738–14741 (1990).

    CAS  PubMed  Google Scholar 

  33. Jay, S. D. et al. Structural characterization of the dihydropyridine-sensitive calcium channel α2-subunit and the associated δ peptides. J. Biol. Chem. 266, 3287–3293 (1991).

    CAS  PubMed  Google Scholar 

  34. Davies, A. et al. The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a post-translational modification essential for function. Proc. Natl Acad. Sci. USA 107, 1654–1659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Calderon-Rivera, A. et al. Identification of a disulfide bridge essential for structure and function of the voltage-gated Ca2+ channel α2δ-1 auxiliary subunit. Cell Calcium 51, 22–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, M.-C., Berrow, N. S., Ford, R. C., Dolphin, A. C. & Kitmitto, A. 3D structure of the skeletal muscle dihydropyridine receptor. J. Mol. Biol. 323, 85–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wolf, M., Eberhart, A., Glossmann, H., Striessnig, J. & Grigorieff, N. Visualization of the domain structure of an L-type Ca2+ channel using electron cryo-microscopy. J. Mol. Biol. 332, 171–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Walsh, C. P., Davies, A., Butcher, A. J., Dolphin, A. C. & Kitmitto, A. Three-dimensional structure of CaV3.1 — comparison with the cardiac L-type voltage-gated calcium channel monomer architecture. J. Biol. Chem. 284, 22310–22321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Canti, C. et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl Acad. Sci. USA 102, 11230–11235 (2005). This study identified the importance of the VWA domain in α 2 δ subunits for calcium channel trafficking and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anantharaman, V. & Aravind, L. Cache — a signalling domain common to animal Ca2+ channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem. Sci. 25, 535–537 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Urao, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. Sci. STKE 2001, re18 (2001).

    CAS  PubMed  Google Scholar 

  42. Cole, R. L. et al. Differential distribution of voltage-gated calcium channel alpha-2 delta (α2δ) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J. Comp. Neurol. 491, 246–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Newton, R. A., Bingham, S., Case, P. C., Sanger, G. J. & Lawson, S. N. Dorsal root ganglion neurons show increased expression of the calcium channel α2δ-1 subunit following partial sciatic nerve injury. Brain Res. Mol. Brain Res. 95, 1–8 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Bauer, C. S. et al. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J. Neurosci. 29, 4076–4088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taylor, C. P. & Garrido, R. Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (α2-δ) type 1 protein. Neuroscience 155, 510–521 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Barclay, J. et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. J. Neurosci. 21, 6095–6104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wycisk, K. A. et al. Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest. Ophthalmol. Vis. Sci. 47, 3523–3530 (2006).

    Article  PubMed  Google Scholar 

  48. Wycisk, K. A. et al. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am. J. Hum. Genet. 79, 973–977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Davies, A. et al. The calcium channel α2δ-2 subunit partitions with CaV2.1 in lipid rafts in cerebellum: implications for localization and function. J. Neurosci. 26, 8748–8757 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mercer, A. J., Chen, M. & Thoreson, W. B. Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J. Neurosci. 31, 4397–4406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hendrich, J. et al. Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin. Proc. Natl Acad. Sci. USA 105, 3628–3633 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tran-Van-Minh, A. & Dolphin, A. C. The α2δ ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit α2δ-2. J. Neurosci. 130, 12856–12867 (2010).

    Article  CAS  Google Scholar 

  53. Hoppa, M., Lana, B., Margas, W., Dolphin, A. C. & Ryan, T. A. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486, 122–125 (2012). This study reports the surprising finding that α 2 δ overexpression in hippocampal neurons increased the amount of vesicular release at individual synapses resulting from a single action potential, whereas overexpression of Ca V 2.1 did not have this effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dickman, D. K., Kurshan, P. T. & Schwarz, T. L. Mutations in a Drosophila α2δ voltage-gated calcium channel subunit reveal a crucial synaptic function. J. Neurosci. 28, 31–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saheki, Y. & Bargmann, C. I. Presynaptic CaV2 calcium channel traffic requires CALF-1 and the α2δ subunit UNC-36. Nature Neurosci. 12, 1257–1265 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Dolphin, A. C. G protein modulation of voltage-gated calcium channels. Pharmacol. Rev. 55, 607–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein, G. M. & Jones, O. T. Kinetics of internalization and degradation of N-type voltage-gated calcium channels: role of the α2δ subunit. Cell Calcium 41, 27–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Gurnett, C. A., Felix, R. & Campbell, K. P. Extracellular interaction of the voltage-dependent Ca2+ channel α2δ and α1 subunits. J. Biol. Chem. 272, 18508–18512 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Gurnett, C. A., De Waard, M. & Campbell, K. P. Dual function of the voltage-dependent Ca2+ channel α2δ subunit in current stimulation and subunit interaction. Neuron 16, 431–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Gee, N. S. et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the α2δ subunit of a calcium channel. J. Biol. Chem. 271, 5768–5776 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Gao, B. et al. Functional properties of a new voltage-dependent calcium channel α2δ auxiliary subunit gene (CACNA2D2). J. Biol. Chem. 275, 12237–12242 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Wanajo, A. et al. Methylation of the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology 135, 580–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Carboni, G. L. et al. CACNA2D2-mediated apoptosis in NSCLC cells is associated with alterations of the intracellular calcium signaling and disruption of mitochondria membrane integrity. Oncogene 22, 615–626 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurshan, P. T., Oztan, A. & Schwarz, T. L. Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nature Neurosci. 12, 1415–1423 (2009). This study shows that the loss of synaptic bouton formation resulting from knockout of α 2 δ-3 is independent of this subunit's effect on calcium channel trafficking and function.

    Article  CAS  PubMed  Google Scholar 

  65. Eroglu, C. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009). This study identifies an interaction between α 2 δ-1 and thrombospondin that is required for synaptogenesis and prevented by gabapentin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kazerounian, S., Yee, K. O. & Lawler, J. Thrombospondins in cancer. Cell. Mol. Life Sci. 65, 700–712 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Burashnikov, E. et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm. 7, 1872–1882 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Templin, C. et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur. Heart J. 32, 1077–1088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Senatore, A. et al. Mutant PrP suppresses glutamatergic neurotrasmission in cerebellar granule neurons by impairing membrane delivery of VGCC α2δ-1 subunit. Neuron 74, 300–313 (2012). This paper shows that mutant PrPs interact strongly with α 2 δ-1 and cause it to be retained intracellularly; this may be a mechanism for the reduced calcium currents and reduced excitatory synaptic transmission in mutant prion knock-in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, H. et al. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 114, 529–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Luo, Z. D. et al. Upregulation of dorsal root ganglion α2δ calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J. Neurosci. 21, 1868–1875 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, C. Y. et al. Calcium channel α2δ1 subunit mediates spinal hyperexcitability in pain modulation. Pain 125, 20–34 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neely, G. G. et al. A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene. Cell 143, 628–638 (2010). This study reveals a key role for α 2 δ-3 in pain perception in the CNS of D. melanogaster , mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Donato, R. et al. The ducky2 mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression. J. Neurosci. 26, 12576–12586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brill, J. et al. entla, a novel epileptic and ataxic Cacna2d2 mutant of the mouse. J. Biol. Chem. 279, 7322–7330 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Ivanov, S. V. et al. Cerebellar ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of the Cacna2d2 gene. Am. J. Pathol. 165, 1007–1018 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Klassen, T. et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145, 1036–1048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marson, A. G., Kadir, Z. A., Hutton, J. L. & Chadwick, D. W. Gabapentin add-on for drug-resistant partial epilepsy. Cochrane Database. Syst. Rev. CD001415 (2000).

  80. Silverman, R. B. From basic science to blockbuster drug: the discovery of Lyrica. Angew. Chem. Int. Ed Engl. 47, 3500–3504 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Taylor, C. P., Angelotti, T. & Fauman, E. Pharmacology and mechanism of action of pregabalin: the calcium channel α2-δ (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res. 73, 137–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Stacey, B. R., Barrett, J. A., Whalen, E., Phillips, K. F. & Rowbotham, M. C. Pregabalin for postherpetic neuralgia: placebo-controlled trial of fixed and flexible dosing regimens on allodynia and time to onset of pain relief. J. Pain 9, 1006–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Moore, R. A., Straube, S., Wiffen, P. J., Derry, S. & McQuay, H. J. Pregabalin for acute and chronic pain in adults. Cochrane Database. Syst. Rev. CD007076 (2009).

  84. Moore, R. A., Wiffen, P. J., Derry, S. & McQuay, H. J. Gabapentin for chronic neuropathic pain and fibromyalgia in adults. Cochrane Database. Syst. Rev. CD007938 (2011). This review combines data from several trials reporting the use of gabapentin in various forms of neuropathic pain.

  85. Dickenson, A. H., Bee, L. A. & Suzuki, R. Pains, gains, and midbrains. Proc. Natl Acad. Sci. USA 102, 17885–17886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gong, H. C., Hang, J., Kohler, W., Li, L. & Su, T. Z. Tissue-specific expression and gabapentin-binding properties of calcium channel α2δ subunit subtypes. J. Membr. Biol. 184, 35–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Field, M. J. et al. Identification of the α2δ-1 subunit of voltage-dependent calcium channels as a novel molecular target for pain mediating the analgesic actions of pregabalin. Proc. Natl Acad. Sci. USA 103, 17537–17542 (2006). This paper conclusively shows that gabapentin and pregabalin act through interaction with α 2 δ-1 in the alleviation of neuropathic pain, as their effects are lost in a knock-in mouse harbouring a mutation in α 2 δ-1 rendering it insensitive to these drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dissanayake, V. U. K., Gee, N. S., Brown, J. P. & Woodruff, G. N. Spermine modulation of specific [3H]-gabapentin binding to the detergent-solubilized porcine cerebral cortex α2δ calcium channel subunit. Br. J. Pharmacol. 120, 833–840 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, J. P., Dissanayake, V. U., Briggs, A. R., Milic, M. R. & Gee, N. S. Isolation of the [3H]gabapentin-binding protein/α2δ Ca2+ channel subunit from porcine brain: development of a radioligand binding assay for α2δ subunits using [3H]leucine. Anal. Biochem. 255, 236–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Schumacher, T. B., Beck, H., Steinhäuser, C., Schramm, J. & Elger, C. E. Effects of phenytoin, carbamazepine, and gabapentin on calcium channels in hippocampal granule cells from patients with temporal lobe epilepsy. Epilepsia 39, 355–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Stefani, A., Spadoni, F. & Bernardi, G. Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 37, 83–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Martin, D. J. et al. Gabapentin-mediated inhibition of voltage-activated Ca2+ channel currents in cultured sensory neurones is dependent on culture conditions and channel subunit expression. Neuropharmacology 42, 353–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Sutton, K. G., Martin, D. J., Pinnock, R. D., Lee, K. & Scott, R. H. Gabapentin inhibits high-threshold calcium channel currents in cultured rat dorsal root ganglion neurones. Br. J. Pharmacol. 135, 257–265 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Molgaard-Nielsen, D. & Hviid, A. Newer-generation antiepileptic drugs and the risk of major birth defects. JAMA 305, 1996–2002 (2011).

    Article  PubMed  Google Scholar 

  95. Morrow, J. et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J. Neurol. Neurosurg. Psychiatry 77, 193–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Ruth, P. et al. Primary structure of the β subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 245, 1115–1118 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Pragnell, M. et al. Calcium channel β-subunit binds to a conserved motif in the I-II cytoplasmic linker of the α1-subunit. Nature 368, 67–70 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90, 1461–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Hanlon, M. R., Berrow, N. S., Dolphin, A. C. & Wallace, B. A. Modelling of a voltage-dependent Ca2+ channel β subunit as a basis for understanding its functional properties. FEBS Lett. 445, 366–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Mcgee, A. W. et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 8, 1291–1301 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Mcgee, A. W. et al. Calcium channel function regulated by the SH3-GK module in β subunits. Neuron 42, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Opatowsky, Y., Chen, C. C., Campbell, K. P. & Hirsch, J. A. Structural analysis of the voltage-dependent calcium channel β subunit functional core and its complex with the α1 interaction domain. Neuron 42, 387–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Van Petegem, F., Clark, K. A., Chatelain, F. C. & Minor, D. L. Jr. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429, 671–675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, Y. H. et al. Structural basis of the α1-β subunit interaction of voltage-gated Ca2+ channels. Nature 429, 675–680 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Page, K. M. et al. The N-terminus is key to dominant-negative suppression of CaV2 channels: implications for episodic ataxia-2. J. Biol. Chem. 285, 835–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Lao, Q. Z., Kobrinsky, E., Liu, Z. & Soldatov, N. M. Oligomerization of CaVβ subunits is an essential correlate of Ca2+ channel activity. FASEB J. 24, 5013–5023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Miranda-Laferte, E. et al. Homodimerization of the Src homology 3 domain of the calcium channel β-subunit drives dynamin-dependent endocytosis. J. Biol. Chem. 286, 22203–22210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Matsuyama, Z. et al. Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J. Neurosci. 19, RC14 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meir, A., Bell, D. C., Stephens, G. J., Page, K. M. & Dolphin, A. C. Calcium channel β subunit promotes voltage-dependent modulation of α1B by Gβγ. Biophys. J. 79, 731–746 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Neely, A., Garcia-Olivares, J., Voswinkel, S., Horstkott, H. & Hidalgo, P. Folding of active calcium channel β1b-subunit by size-exclusion chromatography and its role on channel function. J. Biol. Chem. 279, 21689–21694 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Josephson, I. R. & Varadi, G. The β subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys. J. 70, 1285–1293 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kamp, T. J., Pérez-García, M. T. & Marban, E. Enhancement of ionic current and charge movement by coexpression of calcium channel β1A subunit with α1C subunit in a human embryonic kidney cell line. J. Physiol. 492, 89–96 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brice, N. L. et al. Importance of the different α subunits in the membrane expression of the α1A and α2 calcium channel subunits: studies using a depolarisation-sensitive α1A antibody. Eur. J. Neurosci. 9, 749–759 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Bichet, D. et al. The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Leroy, J. et al. Interaction via a key tryptophan in the I-II linker of N-type calcium channels is required for β1 but not for palmitoylated β2, implicating an additional binding site in the regulation of channel voltage-dependent properties. J. Neurosci. 25, 6984–6996 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Altier, C. et al. Trafficking of L-type calcium channels mediated by the postsynaptic scaffolding protein AKAP79. J. Biol. Chem. 277, 33598–33603 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Cohen, R. M. et al. Unique modulation of L-type Ca2+ channels by short auxiliary β1d subunit present in cardiac muscle. Am. J. Physiol. Heart Circ. Physiol. 288, H2363–H2374 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Neely, A., Wei, X., Olcese, R., Birnbaumer, L. & Stefani, E. Potentiation by the β subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262, 575–578 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Cornet, V. et al. Multiple determinants in voltage-dependent P/Q calcium channels control their retention in the endoplasmic reticulum. Eur. J. Neurosci. 16, 883–895 (2002).

    Article  PubMed  Google Scholar 

  120. Waithe, D., Ferron, L., Page, K. M., Chaggar, K. & Dolphin, A. C. β-subunits promote the expression of Cav2.2 channels by reducing their proteasomal degradation. J. Biol. Chem. 286, 9598–9611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Altier, C. et al. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nature Neurosci. 14, 173–180 (2011). This paper and reference 120 show that a primary function of β subunits is to protect Ca V 1 and Ca V 2 channels from endoplasmic reticulum-associated proteasomal degradation.

    Article  CAS  PubMed  Google Scholar 

  122. Bourinet, E., Soong, T. W., Stea, A. & Snutch, T. P. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc. Natl Acad. Sci. USA 93, 1486–1491 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, Y. et al. Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. J. Neurosci. 28, 14176–14188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gerhardstein, B. L., Puri, T. S., Chien, A. J. & Hosey, M. M. Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the β2 subunit of L-type voltage-dependent calcium channels. Biochemistry 38, 10361–10370 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Grueter, C. E. et al. L-type Ca2+ channel facilitation mediated by phosphorylation of the β subunit by CaMKII. Mol. Cell 23, 641–650 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Viard, P. et al. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nature Neurosci. 7, 939–946 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Catalucci, D. et al. Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability. J. Cell Biol. 184, 923–933 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Suh, B. C. & Hille, B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35, 507–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Beguin, P. et al. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411, 701–706 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Finlin, B. S., Crump, S. M., Satin, J. & Andres, D. A. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc. Natl Acad. Sci. USA 100, 14469–14474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fan, M., Buraei, Z., Luo, H. R., Levenson-Palmer, R. & Yang, J. Direct inhibition of P/Q-type voltage-gated Ca2+ channels by Gem does not require a direct Gem/Cavβ interaction. Proc. Natl Acad. Sci. USA 107, 14887–14892 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang, H. G., Wang, C. & Pitt, G. S. Rem2-targeted shRNAs reduce frequency of miniature excitatory postsynaptic currents without altering voltage-gated Ca2+ currents. PLoS ONE 6, e25741 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maltez, J. M., Nunziato, D. A., Kim, J. & Pitt, G. S. Essential Cavβ modulatory properties are AID-independent. Nature Struct. Mol. Biol. 12, 372–377 (2005).

    Article  CAS  Google Scholar 

  134. Kiyonaka, S. et al. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nature Neurosci. 10, 691–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Gandini, M. A. et al. Functional coupling of Rab3-interacting molecule 1 (RIM1) and L-type Ca2+ channels in insulin release. J. Biol. Chem. 286, 15757–15765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hibino, H. et al. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34, 411–423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, K. S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Hibino, H. et al. Direct interaction with a nuclear protein and regulation of gene silencing by a variant of the Ca2+ channel β4 subunit. Proc. Natl Acad. Sci. USA 100, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, Y. et al. The β subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6. J. Biol. Chem. 285, 2527–2536 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Richards, M. W., Leroy, J., Pratt, W. S. & Dolphin, A. C. The HOOK-domain between the SH3 and the GK domains of CaVβ subunits contains key determinants controlling calcium channel inactivation. Channels 1, 92–101 (2007).

    Article  PubMed  Google Scholar 

  141. Gach, M. P. et al. α2δ1 dihydropyridine receptor subunit is a critical element for excitation-coupled calcium entry but not for formation of tetrads in skeletal myotubes. Biophys. J. 94, 3023–3034 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Obermair, G. J. et al. The Ca2+ channel α2δ-1 subunit determines Ca2+ current kinetics in skeletal muscle but not targeting of α1S or excitation-contraction coupling. J. Biol. Chem. 280, 2229–2237 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Cantí, C., Davies, A. & Dolphin, A. C. Calcium channel α2δ subunits: structure, function and target site for drugs. Curr. Neuropharmacol. 1, 209–217 (2003).

    Article  Google Scholar 

  144. Kim, E. Y. et al. Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization. EMBO J. 29, 3924–3938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ellis, S. B. et al. Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science 241, 1661–1664 (1988).

    Article  CAS  PubMed  Google Scholar 

  146. Chang, F. C. & Hosey, M. M. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J. Biol. Chem. 263, 18929–18937 (1988).

    CAS  PubMed  Google Scholar 

  147. Marais, E., Klugbauer, N. & Hofmann, F. Calcium channel α2δ subunits — structure and gabapentin binding. Mol. Pharmacol. 59, 1243–1248 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Fosset, M., Jaimovich, E., Delpont, E. & Lazdunski, M. [3H]nitrendipine receptors in skeletal muscle. J. Biol. Chem. 258, 6086–6092 (1983).

    CAS  PubMed  Google Scholar 

  149. Block, B. A., Imagawa, T., Campbell, K. P. & Franzini-Armstrong, C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 107, 2587–2600 (1988).

    Article  CAS  PubMed  Google Scholar 

  150. Garcia, K., Nabhani, T. & Garcia, J. The calcium channel α2/δ1 subunit is involved in extracellular signalling. J. Physiol. 586, 727–738 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Fuller-Bicer, G. A. et al. Targeted disruption of the voltage-dependent Ca2+ channel α2/δ-1 subunit. Am. J. Physiol. Heart Circ. Physiol. 297, H117–H124 (2009). This paper reports the generation of viable α 2 δ-1 knockout mice, despite prior reports in the literature that this knockout is neonatally lethal. The mice are reported to have a cardiac defect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dolphin, A. C. Calcium channel diversity: multiple roles of calcium channel subunits. Curr. Opin. Neurobiol. 19, 237–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Gregg, R. G. et al. Absence of the β subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the α1 subunit and eliminates excitation–contraction coupling. Proc. Natl Acad. Sci. USA 93, 13961–13966 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, F. et al. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nature Neurosci. 14, 570–577 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Schredelseker, J., Dayal, A., Schwerte, T., Franzini-Armstrong, C. & Grabner, M. Proper restoration of excitation-contraction coupling in the dihydropyridine receptor β1-null zebrafish relaxed is an exclusive function of the β1a subunit. J. Biol. Chem. 284, 1242–1251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Weissgerber, P. et al. Reduced cardiac L-type Ca2+ current in CaVβ2−/− embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ. Res. 99, 749–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Ball, S. L. et al. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest. Ophthalmol. Vis. Sci. 43, 1595–1603 (2002).

    PubMed  Google Scholar 

  158. Neef, J. et al. The Ca2+ channel subunit β2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. J. Neurosci. 29, 10730–10740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Burgess, D. L., Jones, J. M., Meisler, M. H. & Noebels, J. L. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88, 385–392 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Murakami, M. et al. Pain perception in mice lacking the β3 subunit of voltage-activated calcium channels. J. Biol. Chem. 277, 40342–40351 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Badou, A. et al. Critical role for the β regulatory subunits of Cav channels in T lymphocyte function. Proc. Natl Acad. Sci. USA 103, 15529–15534 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jha, M. K. et al. Defective survival of naive CD8+ T lymphocytes in the absence of the β3 regulatory subunit of voltage-gated calcium channels. Nature Immunol. 10, 1275–1282 (2009).

    Article  CAS  Google Scholar 

  163. Omilusik, K. et al. The CaV1.4 calcium channel is a critical regulator of T cell receptor signaling and naive T cell homeostasis. Immunity 35, 349–360 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Jeon, D. et al. Ablation of Ca2+ channel β3 subunit leads to enhanced N-methyl- D-aspartate receptor-dependent long term potentiation and improved long term memory. J. Biol. Chem. 283, 12093–12101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ebert, A. M. et al. Ca2+ channel-independent requirement for MAGUK family CACNB4 genes in initiation of zebrafish epiboly. Proc. Natl Acad. Sci. USA 105, 198–203 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Putzier, I., Kullmann, P. H., Horn, J. P. & Levitan, E. S. CaV1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J. Neurosci. 29, 15414–15419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guzman, J. N., Sanchez-Padilla, J., Chan, C. S. & Surmeier, D. J. Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29, 11011–11019 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, Z. et al. Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses. Nature Neurosci. 14, 478–486 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M. & Greenberg, M. E. Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  171. Richards, M. W., Butcher, A. J. & Dolphin, A. C. Calcium channel γ-subunits: structural insights AID our understanding. Trends Pharmacol. Sci. 25, 626–632 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's work is funded by the Wellcome Trust and the Medical Research Council. She would like to thank all members of her laboratory, past and present, who have contributed to work on this topic.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

A.C.D. received a grant from Pfizer to fund a Ph.D. studentship.

Related links

Related links

FURTHER INFORMATION

Annette C. Dolphin's homepage

The 3DLigandSite website

The Protein Homology/analogY Recognition Engine V 2.0 (Phyre2)

Glossary

Auxiliary subunits

In the context of ion channels, an auxiliary or accessory subunit does not have a direct role in forming the channel pore, but modifies the channels, affecting their trafficking, biophysical properties or pharmacology.

von Willebrand factor A domain

(VWA domain). These domains are found in many proteins, including integrins, and are generally involved in extracellular protein–protein interactions.

Metal ion-dependent adhesion site motif

(MIDAS motif). A motif located within the von Willebrand factor A domain. It binds a divalent cation, usually Ca2+ or Mg2+, to mediate high-affinity interactions with another protein, and is often associated with structural rearrangements.

Synaptogenesis

Synaptogenesis involves the formation of synapses between a presynaptic terminal and a postsynaptic element. It results in the close apposition of presynaptic active zones, which contain calcium channels and vesicular release sites, with postsynaptic membranes, which contain neurotransmitter receptor ion channels and other postsynaptic proteins.

Gabapentinoid

The drugs gabapentin and pregabalin are collectively termed gabapentinoids, which are also known as α2δ ligand drugs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolphin, A. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat Rev Neurosci 13, 542–555 (2012). https://doi.org/10.1038/nrn3311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing