Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the role of podocytes in proteinuria

Abstract

Disturbances in many different molecular pathways and interactions can lead to the same clinical end points of proteinuria and end-stage renal disease. Proteinuria is often accompanied by a cytopathological change in the glomerulus that is referred to as effacement (retraction) of the podocyte foot processes. The molecular mechanisms that lead to proteinuria and podocyte effacement are poorly understood; therefore, targeted therapies are lacking. During the past 5 years, however, a large body of data has emerged in this field. The discovery of podocyte gene defects that underlie some hereditary proteinuric syndromes has changed our understanding of the relative contributions of components of the glomerular filter. Furthermore, pathogenic pathways activated in podocytes during proteinuria have been identified. Together, these findings pinpoint the podocyte as the most obvious candidate for therapeutic intervention. In the near future, the use of large-scale expression profiling platforms, transgenic mouse lines, and other in vivo gene delivery methods will further expand our understanding of the pathology of the glomerular filtration barrier, and perhaps reveal novel target molecules for the therapy of proteinuric kidney diseases.

Key Points

  • Although the glomerular endothelium, glomerular basement membrane and podocytes all contribute to the filtration barrier, the podocytes seem to be the most critical part of the filtration unit

  • Most cases of proteinuria are associated with retraction (effacement) of podocyte foot processes, although the mechanisms of this association are not well understood

  • Several pathogenic pathways activated in podocytes during the development of proteinuria have been discovered

  • The use of molecular profiling, transgenic mice and in vivo gene delivery will expand our understanding of the glomerular filtration barrier, and perhaps reveal novel therapeutic targets for proteinuria

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the glomerular filtration barrier.
Figure 2: Podocyte effacement is a characteristic morphological change associated with proteinuria and nephrotic syndrome, as revealed by scanning electronic micrographs.

Similar content being viewed by others

References

  1. Kanwar, Y. S., Linker, A. & Farquhar, M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86, 688–693 (1980).

    Article  CAS  Google Scholar 

  2. Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245 (2003).

    Article  CAS  Google Scholar 

  3. Harvey, S. J. et al. Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am. J. Pathol. 171, 139–152 (2007).

    Article  CAS  Google Scholar 

  4. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K. & Miner, J. H. Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol. Dial. Transplant. doi:10.1093/ndt/gfn758.

    Article  CAS  Google Scholar 

  5. Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med. 354, 1387–1401 (2006).

    Article  CAS  Google Scholar 

  6. Haraldsson, B., Nystrom, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  Google Scholar 

  7. Jeansson, M., Bjorck, K., Tenstad, O. & Haraldsson, B. Adriamycin alters glomerular endothelium to induce proteinuria. J. Am. Soc. Nephrol. 20, 114–122 (2009).

    Article  CAS  Google Scholar 

  8. Jeansson, M. & Haraldsson, B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am. J. Physiol. Renal Physiol. 290, F111–F116 (2006).

    Article  CAS  Google Scholar 

  9. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  Google Scholar 

  10. Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    Article  CAS  Google Scholar 

  11. Hudson, B. G., Tryggvason, K., Sundaramoorthy, M. & Neilson, E. G. Alport's syndrome, Goodpasture's syndrome, and type IV collagen. N. Engl. J. Med. 348, 2543–2556 (2003).

    Article  CAS  Google Scholar 

  12. Utriainen, A. et al. Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum. Mol. Genet. 13, 2089–2099 (2004).

    Article  CAS  Google Scholar 

  13. Miner, J. H. Building the glomerulus: a matricentric view. J. Am. Soc. Nephrol. 16, 857–861 (2005).

    Article  CAS  Google Scholar 

  14. Noakes, P. G. et al. The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nat. Genet. 10, 400–406 (1995).

    Article  CAS  Google Scholar 

  15. Zenker, M. et al. Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  Google Scholar 

  16. Jarad, G., Cunningham, J., Shaw, A. S. & Miner, J. H. Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J. Clin. Invest. 116, 2272–2279 (2006).

    Article  CAS  Google Scholar 

  17. Oh, J., Reiser, J. & Mundel, P. Dynamic (re)organization of the podocyte actin cytoskeleton in the nephrotic syndrome. Pediatr. Nephrol. 19, 130–137 (2004).

    Article  Google Scholar 

  18. Kreidberg, J. A. et al. α3β1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547 (1996).

    CAS  PubMed  Google Scholar 

  19. Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    Article  CAS  Google Scholar 

  20. Pozzi, A. et al. β1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008).

    Article  CAS  Google Scholar 

  21. Kanasaki, K. et al. Integrin β1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol. 313, 584–593 (2008).

    Article  CAS  Google Scholar 

  22. Doi, M. et al. Recombinant human laminin-10 (α5β1γ1). Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 277, 12741–12748 (2002).

    Article  CAS  Google Scholar 

  23. Dai, C. et al. Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. J. Am. Soc. Nephrol. 17, 2164–2175 (2006).

    Article  CAS  Google Scholar 

  24. El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17, 1334–1344 (2006).

    Article  CAS  Google Scholar 

  25. Cohen, C. D. et al. Comparative promoter analysis allows de novo identification of specialized cell junction-associated proteins. Proc. Natl Acad. Sci. USA 103, 5682–5687 (2006).

    Article  CAS  Google Scholar 

  26. Radice, G. L. et al. Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol. 139, 1025–1032 (1997).

    Article  CAS  Google Scholar 

  27. Huber, T. B. et al. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. J. Clin. Invest. 116, 1337–1345 (2006).

    Article  CAS  Google Scholar 

  28. Jones, N. et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440, 818–823 (2006).

    Article  CAS  Google Scholar 

  29. Verma, R. et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J. Clin. Invest. 116, 1346–1359 (2006).

    Article  CAS  Google Scholar 

  30. He, B. et al. Association of genetic variants at 3q22 with nephropathy in patients with type 1 diabetes mellitus. Am. J. Hum. Genet. 84, 5–13 (2009).

    Article  CAS  Google Scholar 

  31. Garg, P., Verma, R., Nihalani, D., Johnstone, D. B. & Holzman, L. B. Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol. Cell. Biol. 27, 8698–8712 (2007).

    Article  CAS  Google Scholar 

  32. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  Google Scholar 

  33. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  Google Scholar 

  34. Dietrich, A. et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol. Cell. Biol. 25, 6980–6989 (2005).

    Article  CAS  Google Scholar 

  35. Moller, C. C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 18, 29–36 (2007).

    Article  CAS  Google Scholar 

  36. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    Article  CAS  Google Scholar 

  37. Wang, H. et al. Phospholipase C epsilon modulates β-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ. Res. 97, 1305–1313 (2005).

    Article  CAS  Google Scholar 

  38. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  Google Scholar 

  39. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  Google Scholar 

  40. Conti, M. A., Even-Ram, S., Liu, C., Yamada, K. M. & Adelstein, R. S. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J. Biol. Chem. 279, 41263–41266 (2004).

    Article  CAS  Google Scholar 

  41. Arrondel, C. et al. Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J. Am. Soc. Nephrol. 13, 65–74 (2002).

    CAS  PubMed  Google Scholar 

  42. Wei, C. et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 (2008).

    Article  CAS  Google Scholar 

  43. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    Article  CAS  Google Scholar 

  44. He, L. et al. Glomerulus-specific mRNA transcripts and proteins identified through kidney expressed sequence tag database analysis. Kidney Int. 71, 889–900 (2007).

    Article  CAS  Google Scholar 

  45. Patrakka, J. et al. Expression and subcellular distribution of novel glomerulus-associated proteins dendrin, ehd3, sh2d4a, plekhh2, and 2310066E14Rik. J. Am. Soc. Nephrol. 18, 689–697 (2007).

    Article  CAS  Google Scholar 

  46. Takemoto, M. et al. Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J. 25, 1160–1174 (2006).

    Article  CAS  Google Scholar 

  47. Berthier, C. C. et al. Enhanced expression of Janus kinase-signal tranducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).

    Article  CAS  Google Scholar 

  48. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by The Swedish Medical Research Council (J. Patrakka and K. Tryggvason), The Swedish Society of Medicine (J. Patrakka), and the Knut and Alice Wallenberg Foundation (K. Tryggvason).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Patrakka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrakka, J., Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat Rev Nephrol 5, 463–468 (2009). https://doi.org/10.1038/nrneph.2009.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing