Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Serum free light chain assessment in monoclonal gammopathy and kidney disease

Abstract

Abnormalities of immunoglobulin free light chains (FLCs) are frequently present in patients with monoclonal gammopathies and can cause kidney disease. The recent introduction of highly sensitive immunoassays that measure FLCs to levels below those present in normal individuals has provided a new tool for diagnosis and management in this setting. Here, we review the biology of FLC production in health and disease, and the utility of FLC immunoassays in the assessment of monoclonal gammopathies in kidney disease.

Key Points

  • Serum free light chain (FLC) immunoassays can identify monoclonal FLCs with high sensitivity and specificity

  • The screening of serum alone using serum protein electrophoresis and measuring serum κ and λ FLC levels will identify all patients with multiple myeloma and 99% of patients with AL amyloidosis

  • Concentrations of serum polyclonal FLCs are GFR dependent and increase with increasing renal impairment

  • The monitoring of serum FLCs provides an insight into the response to treatment of patients with acute kidney injury and myeloma

  • Renal recovery from cast nephropathy is associated with a significant reduction in serum FLC levels

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An antibody molecule showing heavy and light chain structure, together with free κ and λ light chains.
Figure 2: Serum κ:λ FLC ratios to identify patients with κ or λ light-chain-only multiple myeloma.
Figure 3: Serum FLC concentrations in patients with CKD.
Figure 4: Screening algorithm for suspected monoclonal gammopathies.

Similar content being viewed by others

References

  1. Bradwell, A. R. et al. Highly sensitive automated immunoassay for immunoglobulin FLCs in serum and urine. Clin. Chem. 47, 673–680 (2001).

    CAS  PubMed  Google Scholar 

  2. Katzmann, J. A. et al. Serum reference intervals and diagnostic ranges for free κ and free λ immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin. Chem. 48, 1437–1444 (2002).

    CAS  PubMed  Google Scholar 

  3. Doyle, A., Soutar, R. & Geddes, C. C. Multiple myeloma in chronic kidney disease. Nephron Clin. Pract. 111, c7–c11 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Jones, H. B. Papers on chemical pathology, Lecture III. Lancet II, 88–92 (1847).

    Article  Google Scholar 

  5. Solomon, A., Waldmann, T. A., Fahey, J. L. & McFarlane, A. S. Metabolism of Bence Jones proteins. J. Clin. Invest. 43, 103–117 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lindstedt, G. & Lungberg, P. Loss of tubular proteinuria pattern during urine concentration with a commerical membrane filter cell. Clin. Chem. Acta 56, 125–126 (1974).

    Article  CAS  Google Scholar 

  7. Harrison, H. H. The “Ladder Light Chain” or “Pseudo-Oligoclonal” pattern in urinary immunofixation electrophoresis (IFE) studies: a distinct IFE pattern and an explanation hypothesis relating it to free polyclonal light chains. Clin. Chem. 37, 1559–1564 (1991).

    CAS  PubMed  Google Scholar 

  8. Hess, P. P., Mastropaolo, W., Thompson, G. D. & Levinson, S. S. Interference of polyclonal free light chains with identification of Bence-Jones proteins. Clin. Chem. 39, 1734–1738 (1993).

    CAS  PubMed  Google Scholar 

  9. Bridgen, M. L., Neal, E. D., McNeely, N. D. & Hoag, G. N. The optimal urine collection for detection and monitoring of Bence Jones proteinuria. Am. J. Clin. Path. 93, 689–693 (1990).

    Article  Google Scholar 

  10. Hill, P. G., Forsyth, J. M., Rai, B. & Mayne, S. Serum free light chains: an alternative to the urine Bence Jones proteins screening test for monoclonal gammopathies. Clin. Chem. 52, 1743–1748 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Hutchison, C. A. et al. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrol. 22, 11 (2008).

    Article  Google Scholar 

  12. Pratt, G. The evolving use of serum free light chain assays in haematology. Br. J. Haematol. 141, 413–422 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Dispenzieri, A. et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 23, 215–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hutchison, C. A. et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1684–1690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hutchison, C. A. et al. Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J. Am. Soc. Nephrol. 18, 886–895 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Cserti, C., Haspel, R., Stowell, C. & Dzik, W. Light-chain removal by plasmapheresis in myeloma-associated renal failure. Transfusion 47, 511–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Pillon, L. et al. Approach to acute renal failure in biopsy proven myeloma cast nephropathy: is there still a role for plasmapharesis? Kidney Int. 74, 956–961 (2008).

    Article  PubMed  Google Scholar 

  18. Leung, N. et al. Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney Int. 73, 1282–1288 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Ritz, E. Plasma exchange for acute renal failure of myeloma—logical, yet ineffective. J. Am. Soc. Nephrol. 17, 914–916 (2006).

    Article  Google Scholar 

  20. Brockhurst, I., Harris, K. P. & Chapman, C. S. Diagnosis and monitoring a case of light-chain deposition disease in the kidney using a new, sensitive immunoassay. Nephrol. Dial. Transplant. 20, 1251–1253 (2005).

    Article  PubMed  Google Scholar 

  21. Miettinen, T. A. & Kekki, M. Effect of impaired hepatic and renal function on Bence Jones protein catabolism in human subjects. Clin. Chim. Acta 18, 395–407 (1967).

    Article  Google Scholar 

  22. Wochner, R. D., Strober, W. & Waldmann, T. A. The role of the kidney in the catabolism of Bence Jones proteins and immunoglobulin fragments. J. Exp. Med. 126, 207–221 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klassen, R. et al. Light chains are a ligand for megalin. J. Appl. Physiol. 98, 257–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Batuman, V. et al. Myeloma light chains are ligands for cubilin (gp280). Am. J. Physiol. Renal Physiol. 275, F246–F254 (1998).

    Article  CAS  Google Scholar 

  25. Hutchison, C. A. et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with type II diabetes: an early marker of diabetic kidney disease? Expert Opin. Ther. Targets 12, 667–676 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman, U. et al. Free immunoglobulin light chains in patients with rheumatic diseases. Z. Rheumatol. 62 (Suppl. 1), 1051 (2003).

    Google Scholar 

  27. Vermeersch, P., Van Hoovels, L., Delforge, M., Godelieve, M. & Bossuyt, X. Diagnostic performance of serum free light chain measurement in patients suspected of a monoclonal B-cell disorder. Br. J. Haematol. 143, 496–502 (2008).

    Article  PubMed  Google Scholar 

  28. Katzmann, J. A. et al. Elimination of the need for urine studies in the screening algorithm for monoclonal gammopathies by using serum immunofixation and free light chain assays. Mayo Clin. Proc. 81, 1575–1578 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hofman, W., Garbrecht, M., Bradwell, A. R. & Guder, W. G. A new concept for detection of Bence Jones proteinuria in patients with monoclonal gammopathy. Clin. Lab. 50, 181–185 (2004).

    Google Scholar 

  30. Beetham, R., Wassell, J., Wallage, M. J., Whiteway, A. J. & James, J. A. Can serum free light chains replace urine electrophoresis in the detection of monoclonal gammopathies? Ann. Clin. Biochem. 44, 516–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Palladini, G. et al. Identification of amyloidogenic light chains requires the combination of serum free light chain assay with immunofixation of serum and urine. Clin. Chem. 55, 499–504 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Katzmann, J. A. et al. Screening panels for detection of monoclonal gammopathies. Clin. Chem. 55, 1517–1522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holding, S. et al. Combination of serum free light chain analysis with capillary zone electrophoresis improves screening for monoclonal gammopathies [abstract]. Blood 110, 1497 (2007).

    Google Scholar 

  34. Smith, A., Wisloff, F. & Samson, D. On behalf of the UK Myeloma Forum, Nordic Myeloma Study Group and British Committee for Standards in Haematology. Br. J. Haematol. 132, 410–451 (2005).

    Article  Google Scholar 

  35. Kyle, R. A. et al. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 354, 1362–1369 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kyle, R. A. & Rajkumar, S. V. Monoclonal gammopathy of undetermined significance. Br. J. Haematol. 134, 573–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kyle, R. A. et al. A long term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346, 564–569 (2002).

    Article  PubMed  Google Scholar 

  38. Hutchison, C. A. et al. Free light chain abnormalities in patients with chronic kidney disease [abstract]. J. Am. Soc. Nephrol. 17, 899a (2006).

    Google Scholar 

  39. Rajkumar, S. V. et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 106, 812–817 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blade, J. Monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 355, 2765–2770 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Blade, J. et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch. Intern. Med. 158, 1889–1893 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Sanders, P. W. Pathogenesis and treatment of myeloma kidney. J. Lab. Clin. Med. 124, 484–488 (1994).

    CAS  PubMed  Google Scholar 

  43. Basnayake, K. et al. Resolution of cast nephropathy following free light chain removal by haemodialysis in a patient with multiple myeloma: a case report. J. Med. Case Reports 2, 380 (2008).

    Article  PubMed Central  Google Scholar 

  44. Wang, P. X. & Sanders P. W. Immunoglobulin light chains generate hydrogen peroxide. J. Am. Soc. Nephrol. 18, 1239–1245 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Sanders, P. W. Management of paraproteinemic renal disease. Curr. Opin. Nephrol. Hypertens. 14, 97–103 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Hutchison, C. A. et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 4, 745–754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chanan-Khan, A. A. et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 109, 2604–2606 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ludwig, H. et al. Reversal of acute renal failure by bortezomib-based chemotherapy in patients with multiple myeloma. Haematologica 92, 1411–1414 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kastritis, E. et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimes and the impact of novel agents. Haematologica 92, 546–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Drayson, M. et al. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood 97, 2900–2902 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Sanchorawala, V. et al. AL amyloidosis associated with B-cell lymphoproliferative disorders: frequency and treatment outcomes. Am. J. Hematol. 81, 692–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Rysavá, R. AL amyloidosis with renal involvement. Kidney Blood Press. Res. 30, 359–364 (2007).

    Article  PubMed  Google Scholar 

  53. Lachmann, H. J. et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br. J. Haematol. 122, 78–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Matsuda, M. et al. Serum levels of free light chains before and after chemotherapy in primary systemic AL amyloidosis. Intern. Med. 44, 428–433 (2005).

    Article  PubMed  Google Scholar 

  55. Novak, L., Cook, W. J., Herrera, G. A. & Sanders, P. W. AL-amyloidosis is under-diagnosed in renal biopsies. Nephrol. Dial. Transplant. 19, 3050–3053 (2004).

    Article  PubMed  Google Scholar 

  56. Deret, S. et al. Molecular modeling of immunoglobulin light chains implicates hydrophobic residues in non-amyloid light chain deposition disease. Prot. Eng. 10, 1191–1197 (1997).

    Article  CAS  Google Scholar 

  57. Zhu, L. et al. Pathogenesis of glomerulosclerosis in light chain deposition disease. Role for transforming growth factor-beta. Am. J. Pathol. 147, 375–385 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pozzi, C. et al. Light chain deposition disease with renal involvement: clinical characteristics and prognostic factors. Am. J. Kidney Dis. 42, 1154–1163 (2003).

    Article  PubMed  Google Scholar 

  59. Montseny, J. J. et al. Long-term outcome according to renal histological lesions in 118 patients with monoclonal gammopathies. Nephrol. Dial. Transplant. 13, 1438–1445 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, J. et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J. Am. Soc. Nephrol. 12, 1482–1492 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Hutchison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, C., Basnayake, K. & Cockwell, P. Serum free light chain assessment in monoclonal gammopathy and kidney disease. Nat Rev Nephrol 5, 621–628 (2009). https://doi.org/10.1038/nrneph.2009.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing