Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibroblast activation and myofibroblast generation in obstructive nephropathy

Abstract

Obstructive nephropathy is a major cause of renal failure, particularly in newborn babies and children. After urinary tract obstruction, and under the influence of mechanical forces and cytokines produced by tubular cells and cells that have infiltrated the interstitium, resident fibroblasts undergo activation and myofibroblasts are generated from bone-marrow-derived cells, pericytes and endothelial cells. In addition, selected tubular epithelial cells can become fibroblast-like cells via epithelial–mesenchymal transition. This transition is characterized by downregulation of epithelial marker proteins such as E-cadherin, zonula occludens 1 and cytokeratin; loss of cell-to-cell adhesion; upregulation of mesenchymal markers including vimentin, α-smooth muscle actin and fibroblast-specific protein 1; basement membrane degradation; and migration to the interstitial compartment. All the events of epithelial–mesenchymal transition are strictly regulated by complex signaling pathways. Myofibroblasts and activated fibroblasts proliferate and produce large amounts of extracellular matrix, which accumulates in the tubular interstitium; together with tubular atrophy, this accumulation leads to interstitial fibrosis. This Review examines the molecular mechanisms of fibroblast activation and epithelial–mesenchymal transition, processes that seem to be promising targets for the prevention, or even reversal, of interstitial fibrosis and renal dysfunction associated with obstructive nephropathy.

Key Points

  • Obstructive nephropathy, a leading cause of chronic kidney disease in children, is characterized by inflammation, tubular atrophy and interstitial fibrosis

  • Activation of local fibroblasts and generation of myofibroblasts from epithelial cells (via epithelial–mesenchymal transition [EMT]), pericytes, endothelial cells and bone-marrow-derived cells are key processes in tubulointerstitial fibrosis

  • Data from rodent models of unilateral ureteral obstruction and in vitro studies have shed new light on the molecular mechanisms that underlie these processes

  • Fibroblast activation and EMT are induced by mechanical forces and cytokines such as transforming growth factor β, platelet-derived growth factor, fibroblast growth factor and activin A

  • EMT is strictly regulated by several signaling pathways that involve small GTPases, mitogen-activated protein kinases, phosphatidylinositol 3 kinase–Akt, glycogen synthase kinase 3β, integrin-linked kinase–PINCH and nuclear factor κB, among other molecules

  • Knowledge of the molecular mechanisms responsible for fibroblast activation and EMT is essential for the development of pharmacological strategies to prevent or treat interstitial fibrosis associated with obstructive nephropathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histological alterations observed in the kidney after unilateral ureteral obstruction in mice.
Figure 2: Origins of activated fibroblasts and myofibroblasts in the obstructed kidney.
Figure 3: Stages of epithelial–mesenchymal transition.
Figure 4: Signaling pathways involved in the initial steps of epithelial–mesenchymal transition.

Similar content being viewed by others

References

  1. Bohle, A., Strutz, F. & Müller, G. A. On the pathogenesis of chronic renal failure in primary glomerulopathies: a view from the interstitium. Exp. Nephrol. 2, 205–210 (1994).

    CAS  PubMed  Google Scholar 

  2. Manucha, W. Biochemical-molecular markers in unilateral ureteral obstruction. Biocell 31, 1–12 (2007).

    CAS  PubMed  Google Scholar 

  3. Lopez-Novoa, J. M. in The Aging Kidney in Health and Disease (eds Macias-Nuñez, J. F. et al.) 113–126 (Springer, New York, 2008).

    Book  Google Scholar 

  4. Joosten, S. A., Sijpkens, Y. W., van Kooten, C. & Paul, L. C. Chronic renal allograft rejection: pathophysiologic considerations. Kidney Int. 68, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, J. M., Stablein, D. M., Munoz, R., Hebert, D. & McDonald, R. A. Contributions of the transplant registry: the 2006 annual report of the North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). Pediatr. Transplant. 11, 366–373 (2007).

    Article  PubMed  Google Scholar 

  6. Chevalier, R. L. Obstructive nephropathy: towards biomarker discovery and gene therapy. Nat. Clin. Pract. Nephrol. 2, 157–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Strutz, F. & Zeisberg, M. Renal fibroblasts and myofibroblasts in chronic kidney disease. J. Am. Soc. Nephrol. 17, 2992–2998 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Qi, W. et al. The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int. J. Biochem. Cell Biol. 38, 1–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Strutz, F. How many different roads may a cell walk down in order to become a fibroblast? J. Am. Soc. Nephrol. 19, 2246–2248 (2008).

    Article  PubMed  Google Scholar 

  10. Roufosse, C. et al. Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J. Am. Soc. Nephrol. 17, 775–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Picard, N., Baum, O., Vogetseder, A., Kaissling, B. & Le Hir, M. Origin of renal myofibroblasts in the model of unilateral ureter obstruction in the rat. Histochem. Cell Biol. 130, 141–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zeisberg, M. & Kalluri, R. Fibroblasts emerge via epithelial–mesenchymal transition in chronic kidney fibrosis. Front. Biosci. 13, 6991–6998 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita, S., Maeshima, A. & Nojima, Y. Involvement of renal progenitor tubular cells in epithelial-to-mesenchymal transition in fibrotic rat kidneys. J. Am. Soc. Nephrol. 16, 2044–2051 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Le Hir, M., Hegyi, I., Cueni-Loffing, D., Loffing, J. & Kaissling, B. Characterization of renal interstitial fibroblast-specific protein 1/S100A4-positive cells in healthy and inflamed rodent kidneys. Histochem. Cell Biol. 123, 335–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kaissling, B. & Le Hir, M. The renal cortical interstitium: morphological and functional aspects. Histochem. Cell Biol. 130, 247–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Inoue, T., Plieth, D., Venkov, C. D., Xu, C. & Neilson, E. G. Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int. 67, 2488–2493 (2005).

    Article  PubMed  Google Scholar 

  19. Desmouliere, A., Chaponnier, C. & Gabbiani, G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 13, 7–12 (2005).

    Article  PubMed  Google Scholar 

  20. El Chaar, M. et al. Cyclooxygenase-2 inhibitor decreases extracellular matrix synthesis in stretched renal fibroblasts. Nephron Exp. Nephrol. 100, e150–e155 (2005).

    Article  PubMed  Google Scholar 

  21. Wang, W., Koka, V. & Lan, H. Y. Transforming growth factor-β and Smad signalling in kidney diseases. Nephrology (Carlton) 10, 48–56 (2005).

    Article  Google Scholar 

  22. Eitner, F. et al. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J. Am. Soc. Nephrol. 19, 281–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strutz, F. et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int. 57, 1521–1538 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Hinz, B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur. J. Cell Biol. 85, 175–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lange-Sperandio, B. et al. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice. Am. J. Pathol. 171, 861–871 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, X. R., Chung, A. C., Wang, X. J., Lai, K. N. & Lan, H. Y. Mice overexpressing latent TGF-β1 are protected against renal fibrosis in obstructive kidney disease. Am. J. Physiol. Renal Physiol. 295, F118–F127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sato, M., Muragaki, Y., Saika, S., Roberts, A. B. & Ooshima, A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112, 1486–1494 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan, R. et al. Downregulation of SnoN expression in obstructive nephropathy is mediated by an enhanced ubiquitin-dependent degradation. J. Am. Soc. Nephrol. 17, 2781–2791 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Fukasawa, H. et al. Ubiquitin-dependent degradation of SnoN and Ski is increased in renal fibrosis induced by obstructive injury. Kidney Int. 69, 1733–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita, S., Maeshima, A., Kojima, I. & Nojima, Y. Activin A is a potent activator of renal interstitial fibroblasts. J. Am. Soc. Nephrol. 15, 91–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, D. B., Huang, E. & Ward, H. J. Tight junction biology and kidney dysfunction. Am. J. Physiol. Renal Physiol. 290, F20–F34 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Faulkner, J. L., Szcykalski, L. M., Springer, F. & Barnes, J. L. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am. J. Pathol. 167, 1193–1205 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rastaldi, M. P. et al. Epithelial–mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int. 62, 137–146 (2002).

    Article  PubMed  Google Scholar 

  35. Nishitani, Y. et al. Fibroblast-specific protein 1 is a specific prognostic marker for renal survival in patients with IgAN. Kidney Int. 68, 1078–1085 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Rossini, M. et al. Immunolocalization of fibroblast growth factor-1 (FGF-1), its receptor (FGFR-1), and fibroblast-specific protein-1 (FSP-1) in inflammatory renal disease. Kidney Int. 68, 2621–2628 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Hertig, A. et al. Risk factors for early epithelial to mesenchymal transition in renal grafts. Am. J. Transplant. 6, 2937–2946 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Vongwiwatana, A., Tasanarong, A., Rayner, D. C., Melk, A. & Halloran, P. F. Epithelial to mesenchymal transition during late deterioration of human kidney transplants: the role of tubular cells in fibrogenesis. Am. J. Transplant. 5, 1367–1374 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Boutet, A. et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 25, 5603–5613 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, M. J. et al. Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney Int. 69, 2029–2036 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Li, Y., Dai, C., Wu, C. & Liu, Y. PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase. J. Am. Soc. Nephrol. 18, 2534–2543 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Surendran, K., Schiavi, S. & Hruska, K. A. Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J. Am. Soc. Nephrol. 16, 2373–2384 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Docherty, N. G. et al. Increased E-cadherin expression in the ligated kidney following unilateral ureteric obstruction. Kidney Int. 75, 205–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Butt, M. J., Tarantal, A. F., Jimenez, D. F. & Matsell, D. G. Collecting duct epithelial–mesenchymal transition in fetal urinary tract obstruction. Kidney Int. 72, 936–944 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132, 3151–3161 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Yoshino, J. et al. Snail1 is involved in the renal epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun. 362, 63–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kida, Y., Asahina, K., Teraoka, H., Gitelman, I. & Sato, T. Twist relates to tubular epithelial–mesenchymal transition and interstitial fibrogenesis in the obstructed kidney. J. Histochem. Cytochem. 55, 661–673 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Horiguchi, K. et al. Role of Ras signaling in the induction of Snail by transforming growth factor-β. J. Biol. Chem. 284, 245–253 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Choi, J., Park, S. Y. & Joo, C. K. Transforming growth factor-β1 represses E-cadherin production via Slug expression in lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 48, 2708–2718 (2007).

    Article  PubMed  Google Scholar 

  54. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Qiao, M., Sheng, S. & Pardee, A. B. Metastasis and Akt activation. Cell Cycle 7, 2991–2996 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez-Pena, A. B. et al. Activation of Erk1/2 and Akt following unilateral ureteral obstruction. Kidney Int. 74, 196–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, Y. G. et al. Role of Wnt/β-catenin signaling pathway in epithelial–mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1α. Int. J. Urol. 14, 1034–1039 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Huber, M. A. et al. NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest. 114, 569–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pham, C. G. et al. Upregulation of Twist-1 by NF-κB blocks cytotoxicity induced by chemotherapeutic drugs. Mol. Cell Biol. 27, 3920–3935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peinado, H. & Cano, A. A hypoxic twist in metastasis. Nat. Cell Biol. 10, 253–254 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Barberà, M. J. et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23, 7345–7354 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. Chua, H. L. et al. NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. McDonald, P. C., Fielding, A. B. & Dedhar, S. Integrin-linked kinase-—essential roles in physiology and cancer biology. J. Cell Sci. 121, 3121–3132 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Legate, K. R., Montañez, E., Kudlacek, O. & Fässler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Li, Y., Yang, J., Dai, C., Wu, C. & Liu, Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112, 503–516 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Deckers, M. et al. The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66, 2202–2209 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Phanish, M. K., Wahab, N. A., Colville-Nash, P., Hendry, B. M. & Dockrell, M. E. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFβ1 responses in human proximal-tubule epithelial cells. Biochem. J. 393, 601–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Runyan, C. E., Schnaper, H. W. & Poncelet, A. C. The role of internalization in transforming growth factor β1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J. Biol. Chem. 280, 8300–8308 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Inazaki, K. et al. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int. 66, 597–604 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Nawshad, A., Lagamba, D., Polad, A. & Hay, E. D. Transforming growth factor-β signaling during epithelial–mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179, 11–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Zavadil, J. & Bottinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Postigo, A. A., Depp, J. L., Taylor, J. J. & Kroll, K. L. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 22, 2453–2462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Venkov, C. D. et al. A proximal activator of transcription in epithelial–mesenchymal transition. J. Clin. Invest. 117, 482–491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vidyasagar, A., Reese, S., Acun, Z., Hullett, D. & Djamali, A. HSP27 is involved in the pathogenesis of kidney tubulointerstitial fibrosis. Am. J. Physiol. Renal Physiol. 295, F707–F716 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Y., Yang, J., Luo, J. H., Dedhar, S. & Liu, Y. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18, 449–460 (2007).

    Article  PubMed  CAS  Google Scholar 

  76. Yang, J. et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J. Clin. Invest. 110, 1525–1538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cai, G. et al. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation. Nephrol. Dial. Transplant. 23, 1861–1875 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Nishida, M. et al. MMP-2 inhibition reduces renal macrophage infiltration with increased fibrosis in UUO. Biochem. Biophys. Res. Commun. 354, 133–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Surendran, K., Simon, T. C., Liapis, H. & McGuire, J. K. Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int. 65, 2212–2222 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Jorda, M. et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J. Cell Sci. 118, 3371–3385 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Yanagisawa, M. et al. A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. J. Biol. Chem. 283, 18344–18354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4, 118–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L. & Mercurio, A. M. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 65, 10938–10945 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Moriyama, T. & Nagatoya, K. The Rho-ROCK system as a new therapeutic target for preventing interstitial fibrosis. Drug News Perspect. 17, 29–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fu, P. et al. Signaling mechanism of renal fibrosis in unilateral ureteral obstructive kidney disease in ROCK1 knockout mice. J. Am. Soc. Nephrol. 17, 3105–3114 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Patel, S. et al. RhoGTPase activation is a key step in renal epithelial mesenchymal transdifferentiation. J. Am. Soc. Nephrol. 16, 1977–1984 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Kaartinen, V., Haataja, L., Nagy, A., Heisterkamp, N. & Groffen, J. TGFβ3-induced activation of RhoA/Rho-kinase pathway is necessary but not sufficient for epithelio–mesenchymal transdifferentiation: implications for palatogenesis. Int. J. Mol. Med. 9, 563–570 (2002).

    CAS  PubMed  Google Scholar 

  88. Guarino, M., Rubino, B. & Ballabio, G. The role of epithelial–mesenchymal transition in cancer pathology. Pathology 39, 305–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Grande, M. T. & López-Novoa, J. M. Therapeutical relevance of MAP-kinase inhibitors in renal diseases: current knowledge and future clinical perspectives. Curr. Med. Chem. 15, 2054–2070 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Fernandez, A. et al. An anticancer c-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J. Clin. Invest. 117, 4044–4054 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Larue, L. & Bellacosa, A. Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/Akt pathways. Oncogene 24, 7443–7454 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Louvet, C. et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105, 18895–18900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Zeisberg, M., Shah, A. A. & Kalluri, R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem. 280, 8094–8100 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Zeisberg, M. & Kalluri, R. Reversal of experimental renal fibrosis by BMP7 provides insights into novel therapeutic strategies for chronic kidney disease. Pediatr. Nephrol. 23, 1395–1398 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' studies have been supported by grants from Ministerio de Educación, Turismo y Deportes (BFU2004-00285/BFI, and SAF2007-63,893), Junta de Castilla y León (SA 001/C05), and Instituto de Salud Carlos III (RETIC RedinRen RD/0016). The authors sincerely thank Dr Angela Nieto for her critical reading of the manuscript and for her suggestions, which greatly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. López-Novoa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grande, M., López-Novoa, J. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat Rev Nephrol 5, 319–328 (2009). https://doi.org/10.1038/nrneph.2009.74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing