Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monitoring of inflammation in patients on dialysis: forewarned is forearmed

Abstract

Current evidence about the effects of inflammation on the outcomes of patients with advanced chronic kidney disease (CKD) generally originates from single measurements of inflammatory biomarkers. Patients with CKD, however, are exposed to persistent low-grade inflammation and levels of serum inflammatory markers are subjected to a substantial variability over time, being influenced by multiple processes, such as transient infections, comorbidities, and the intermittent stimulus of dialysis. Understanding and evaluating inflammation in the context of its time-dependent oscillations in renal disease fluctuation is, therefore, important. Nevertheless, the relationship between longitudinal inflammatory variation and risk prediction has so far been addressed in only a few studies, not all of which have been sufficiently powered. Consequently, uncertainty exists about how to interpret the findings of these studies in the clinical setting. The purpose of this Review is to explore the reasons and implications of variability in levels of inflammatory biomarkers in patients with uremia, specifically focusing on C-reactive protein (CRP) measurements. We also discuss the value of repeated versus single measurements of inflammation in the clinical setting and provide solutions to reduce both sample size and intraindividual variability in hypothetical, randomized controlled trials aimed at reducing CRP levels in patients undergoing hemodialysis.

Key Points

  • In patients with end-stage renal disease, inflammatory markers are subject to substantial variability over time, and are influenced by transient infections, comorbidities, and the intermittent stimulus of dialysis

  • Insufficient evidence exists about the implications of regular C-reactive protein (CRP) screening in patients undergoing dialysis; multiple measures of CRP seem to offer predictive advantages with single determinations

  • Regular CRP screening could identify short-term variation in levels of inflammatory markers associated with mortality, which could facilitate risk stratification of patients with chronic kidney disease

  • Regular CRP screening for individual patients could enable extensive exploration of underlying causes of inflammation and the assignment of appropriate treatment

  • When designing a randomized controlled trial to lower CRP level in patients on hemodialysis, sample size and intrapatient variability can be reduced by estimating inflammation at each time point with averaged measurements for each individual

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intraindividual CRP variability could, in part, be genetically determined.
Figure 2: Weekly CRP variability in three selected hemodialysis patients at Karolinska University Hospital, Stockholm, Sweden.
Figure 3: Prediction of all-cause mortality with single and averaged measurements in prevalent patients undergoing hemodialysis.
Figure 4: Kaplan–Meier survival curves according to trimestral variation patterns.

Similar content being viewed by others

References

  1. Foley, R. N. et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J. Am. Soc. Nephrol. 16, 489–495 (2005).

    Article  PubMed  Google Scholar 

  2. Vanholder, R. et al. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol. Dial. Transplant. 20, 1048–1056 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).

    CAS  PubMed  Google Scholar 

  4. Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Shlipak, M. G. et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293, 1737–1745 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Kimmel, P. L. et al. Immunologic function and survival in hemodialysis patients. Kidney Int. 54, 236–244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Korevaar, J. C. et al. Effect of an increase in C-reactive protein level during a hemodialysis session on mortality. J. Am. Soc. Nephrol. 15, 2916–2922 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Memoli, B. Cytokine production in hemodialysis. Blood Purif. 17, 149–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Luger, A., Kovarik, J., Stummvoll, H. K., Urbanska, A. & Luger, T. A. Blood-membrane interaction in hemodialysis leads to increased cytokine production. Kidney Int. 32, 84–88 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Szeto, C. C. et al. Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 3, 431–436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carrero, J. J., Yilmaz, M. I., Lindholm, B. & Stenvinkel, P. Cytokine dysregulation in chronic kidney disease: how can we treat it? Blood Purif. 26, 291–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Iseki, K., Tozawa, M., Yoshi, S. & Fukiyama, K. Serum C-reactive protein (CRP) and risk of death in chronic dialysis patients. Nephrol. Dial. Transplant. 14, 1956–1960 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Wanner, C. & Metzger, T. C-reactive protein a marker for all-cause and cardiovascular mortality in hemodialysis patients. Nephrol. Dial. Transplant. 17 (Suppl. 8), 29–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Pecoits-Filho, R., Barany, P., Lindholm, B., Heimburger, O. & Stenvinkel, P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol. Dial. Transplant. 17, 1684–1688 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Panichi, V. et al. Chronic inflammation and mortality in hemodialysis: effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol. Dial. Transplant. 23, 2337–2343 (2008).

    Article  PubMed  Google Scholar 

  16. Kawaguchi, T. et al. C-reactive protein and mortality in hemodialysis patients: the dialysis outcomes and practice patterns study (DOPPS). Nephron Clin. Pract. 117, c167–c178 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Yilmaz, M. I., Carrero, J. J., Axelsson, J., Lindholm, B. & Stenvinkel, P. Low-grade inflammation in chronic kidney disease patients before the start of renal replacement therapy: sources and consequences. Clin. Nephrol. 68, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Snaedal, S. et al. Comorbidity and acute clinical events as determinants of C-reactive protein variation in hemodialysis patients: implications for patient survival. Am. J. Kidney Dis. 53, 1024–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Koj, A. Initiation of acute phase response and synthesis of cytokines. Biochim. Biophys. Acta 1317, 84–94 (1996).

    Article  PubMed  Google Scholar 

  20. Baigrie, R. J., Lamont, P. M., Kwiatkowski, D., Dallman, M. J. & Morris, P. J. Systemic cytokine response after major surgery. Br. J. Surg. 79, 757–760 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Hatada, T. & Miki, C. Nutritional status and postoperative cytokine response in colorectal cancer patients. Cytokine 12, 1331–1336 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Peri, G. et al. PTX3, A prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation 102, 636–641 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. De Beer, F. C. et al. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br. Heart J. 47, 239–243 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pepys, M. B. & Hirschfield, G. M. C-reactive protein, a critical update. J. Clin. Invest. 111, 1805–1812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vigushin, D. M., Pepys, M. B. & Hawkins, P. N. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J. Clin. Invest. 91, 1351–1357 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zacho, J. et al. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med. 359, 1897–1908 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, L. et al. C-reactive protein haplotype predicts serum C-reactive protein levels but not cardiovascular disease risk in a dialysis cohort. Am. J. Kidney Dis. 49, 118–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S. A. et al. Intra-individual variation of plasma adipokine levels and utility of single measurement of these biomarkers in population-based studies. Cancer Epidemiol. Biomarkers Prev. 16, 2464–2470 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Macy, E. M., Hayes, T. E. & Tracy, R. P. Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications. Clin. Chem. 43, 52–58 (1997).

    CAS  PubMed  Google Scholar 

  30. Ockene, I. S. et al. Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin. Chem. 47, 444–450 (2001).

    CAS  PubMed  Google Scholar 

  31. Bogaty, P. et al. Fluctuating inflammatory markers in patients with stable ischemic heart disease. Arch. Intern. Med. 165, 221–226 (2005).

    Article  PubMed  Google Scholar 

  32. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Koenig, W. et al. Refinement of the association of serum C-reactive protein concentration and coronary heart disease risk by correction for within-subject variation over time: the MONICA Augsburg studies, 1984 and 1987. Am. J. Epidemiol. 158, 357–364 (2003).

    Article  PubMed  Google Scholar 

  34. Vozarova, B. et al. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes. Res. 9, 414–417 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Koenig, W. et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99, 237–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Fox, E. R. et al. Epidemiology, heritability, and genetic linkage of C-reactive protein in African Americans (from the Jackson Heart Study). Am. J. Cardiol. 102, 835–841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khera, A. et al. Race and gender differences in C-reactive protein levels. J. Am. Coll. Cardiol. 46, 464–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Nasermoaddeli, A., Sekine, M. & Kagamimori, S. Intra-individual variability of high-sensitivity C-reactive protein: age-related variations over time in Japanese subjects. Circ. J. 70, 559–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Carrero, J. J. Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Press. Res. 33, 383–392 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Picotte, M., Campbell, C. G. & Thorland, W. G. Day-to-day variation in plasma interleukin-6 concentrations in older adults. Cytokine 47, 162–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. van Tellingen, A. et al. Intercurrent clinical events are predictive of plasma C-reactive protein levels in hemodialysis patients. Kidney Int. 62, 632–638 (2002).

    Article  PubMed  Google Scholar 

  42. Kaysen, G. A., Dubin, J. A., Muller, H. G., Rosales, L. M. & Levin, N. W. The acute-phase response varies with time and predicts serum albumin levels in hemodialysis patients. The HEMO Study Group. Kidney Int. 58, 346–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Tsirpanlis, G. et al. Exploring inflammation in hemodialysis patients: persistent and superimposed inflammation. A longitudinal study. Kidney Blood Press. Res. 27, 63–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Tsirpanlis, G. et al. The variability and accurate assessment of microinflammation in hemodialysis patients. Nephrol. Dial. Transplant. 19, 150–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Landray, M. J. et al. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am. J. Kidney Dis. 43, 244–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Miyata, T. et al. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51, 1170–1181 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Panichi, V. et al. C-reactive protein in patients on chronic hemodialysis with different techniques and different membranes. Biomed. Pharmacother. 60, 14–17 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Stigant, C. E., Djurdjev, O. & Levin, A. C-reactive protein levels in patients on maintenance hemodialysis: reliability and reflection on the utility of single measurements. Int. Urol. Nephrol. 37, 133–140 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Ortega, O. et al. Strict volume control and longitudinal changes in cardiac biomarker levels in hemodialysis patients. Nephron Clin. Pract. 113, c96–c103 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Shafi, T. et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am. J. Kidney Dis. 56, 348–358 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kolz, M. et al. DNA variants, plasma levels and variability of C-reactive protein in myocardial infarction survivors: results from the AIRGENE study. Eur. Heart J. 29, 1250–1258 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Bennermo, M. et al. Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin. Chem. 50, 2136–2140 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Girndt, M. et al. Anti-inflammatory interleukin-10 genotype protects dialysis patients from cardiovascular events. Kidney Int. 62, 949–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Menon, V. et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 68, 766–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Ortega, O. et al. Significance of high C-reactive protein levels in pre-dialysis patients. Nephrol. Dial. Transplant. 17, 1105–1109 (2002).

    Article  PubMed  Google Scholar 

  56. Panichi, V. et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in hemodialysis patients. Nephrol. Dial. Transplant. 19, 1154–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Wanner, C., Zimmermann, J., Schwedler, S. & Metzger, T. Inflammation and cardiovascular risk in dialysis patients. Kidney Int. 61, S99–S102 (2002).

    Article  Google Scholar 

  58. Park, C. W. et al. Increased C-reactive protein following hemodialysis predicts cardiac hypertrophy in chronic hemodialysis patients. Am. J. Kidney Dis. 40, 1230–1239 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Tarakcioglu, M., Erbagci, A. B., Usalan, C., Deveci, R. & Kocabas, R. Acute effect of hemodialysis on serum levels of the proinflammatory cytokines. Mediators Inflamm. 12, 15–19 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boehme, M. et al. Pentraxin 3 is elevated in hemodialysis patients and is associated with cardiovascular disease. Nephrol. Dial. Transplant. 22, 2224–2229 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Hasuike, Y. et al. Interleukin-6 is a predictor of mortality in stable hemodialysis patients. Am. J. Nephrol. 30, 389–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Kimmel, P. L. et al. Immunologic function and survival in hemodialysis patients. Kidney Int. 54, 236–244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kato, A., Takita, T., Furuhashi, M., Maruyama, Y. & Hishida, A. Comparison of serum albumin, C-reactive protein and carotid atherosclerosis as predictors of 10-year mortality in hemodialysis patients. Hemodial. Int. 14, 226–232 (2010).

    Article  PubMed  Google Scholar 

  64. Zoccali, C., Tripepi, G. & Mallamaci, F. Dissecting inflammation in ESRD: do cytokines and C-reactive protein have a complementary prognostic value for mortality in dialysis patients? J. Am. Soc. Nephrol. 17 (12 Suppl. 3), S169–S173 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Han, S. H. et al. Elevated cardiac troponin T predicts cardiovascular events in asymptomatic continuous ambulatory peritoneal dialysis patients without a history of cardiovascular disease. Am. J. Nephrol. 29, 129–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Herzig, K. A. et al. Is C-reactive protein a useful predictor of outcome in peritoneal dialysis patients? J. Am. Soc. Nephrol. 12, 814–821 (2001).

    CAS  PubMed  Google Scholar 

  67. Wang, A. Y. et al. Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J. Am. Soc. Nephrol. 15, 2186–2194 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Ikizler, T. A., Wingard, R. L., Harvell, J., Shyr, Y. & Hakim, R. M. Association of morbidity with markers of nutrition and inflammation in chronic hemodialysis patients: a prospective study. Kidney Int. 55, 1945–1951 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Tripepi, G., Mallamaci, F. & Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 16 (Suppl. 1), S83–S88 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Honda, H. et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin a as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am. J. Kidney Dis. 47, 139–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Pereira, B. J. et al. Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 45, 890–896 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Herbelin, A., Nguyen, A. T., Zingraff, J., Urena, P. & Descamps-Latscha, B. Influence of uremia and hemodialysis on circulating interleukin-1 and tumor necrosis factor alpha. Kidney Int. 37, 116–125 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Ridker, P. M. et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med. 344, 1959–1965 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Nascimento, M. M. et al. The prognostic impact of fluctuating levels of C-reactive protein in Brazilian hemodialysis patients: a prospective study. Nephrol. Dial. Transplant. 19, 2803–2809 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Dekker, F. W., de Mutsert, R., van Dijk, P. C., Zoccali, C. & Jager, K. J. Survival analysis: time-dependent effects and time-varying risk factors. Kidney Int. 74, 994–997 (2008).

    Article  PubMed  Google Scholar 

  76. den Elzen, W. P., van Manen, J. G., Boeschoten, E. W., Krediet, R. T. & Dekker, F. W. The effect of single and repeatedly high concentrations of C-reactive protein on cardiovascular and non-cardiovascular mortality in patients starting with dialysis. Nephrol. Dial. Transplant. 21, 1588–1595 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ridker, P. M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol. 49, 2129–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Platz, E. A. et al. Intra-individual variation in serum C-reactive protein over 4 years: an implication for epidemiologic studies. Cancer Causes Control. 21, 847–851 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Meuwese, C. L. et al. Trimestral variation patterns of C-reactive protein, interleukin-6 and tumor necrosis factor-α are similarly associated with survival in hemodialysis patients. Nephrol. Dial. Transplant. doi:10.1093/ndt/gfq557.

  80. Ates, K., Ates, A., Ekmekci, Y. & Nergizoglu, G. The time course of serum C-reactive protein is more predictive of mortality than its baseline level in peritoneal dialysis patients. Perit. Dial. Int. 25, 256–268 (2005).

    CAS  PubMed  Google Scholar 

  81. Kim, B. S. et al. Persistent elevation of C-reactive protein may predict cardiac hypertrophy and dysfunction in patients maintained on hemodialysis. Am. J. Nephrol. 25, 189–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Rao, M. et al. Plasma interleukin-6 predicts cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 45, 324–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Levitt, H., Smith, K. G. & Rosner, M. H. Variability in calcium, phosphorus, and parathyroid hormone in patients on hemodialysis. Hemodial. Int. 13, 518–525 (2009).

    Article  PubMed  Google Scholar 

  84. Yang, W. et al. Hemoglobin variability and mortality in ESRD. J. Am. Soc. Nephrol. 18, 3164–3170 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Koulouridis, E. et al. Homocysteine and C-reactive protein levels in hemodialysis patients. Int. Urol. Nephrol. 33, 207–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Raj, D. S. et al. Coordinated increase in albumin, fibrinogen, and muscle protein synthesis during hemodialysis: role of cytokines. Am. J. Physiol. Endocrinol. Metab. 286, E658–E664 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ciaccio, M. et al. Changes in serum fetuin-A and inflammatory markers levels in end-stage renal disease (ESRD): effect of a single session hemodialysis. Clin. Chem. Lab. Med. 46, 212–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Schulze, C. et al. Reduced expression of systemic proinflammatory cytokines after off-pump versus conventional coronary artery bypass grafting. Thorac. Cardiovasc. Surg. 48, 364–369 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Meuwese, C. L. et al. Variations in C-reactive protein during a single hemodialysis session do not associate with mortality. Nephrol. Dial. Transplant. 25, 3717–3723 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499–511 (2003).

    Article  PubMed  Google Scholar 

  91. Carrero, J. J. & Stenvinkel P. Inflammation in end-stage renal disease—what have we learned in 10 years? Semin. Dial. 23, 498–509 (2010).

    Article  PubMed  Google Scholar 

  92. Simmons, E. M. et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 65, 1357–1365 (2004).

  93. Ducloux, D. et al. C-reactive protein and cardiovascular disease in peritoneal dialysis patients. Kidney Int. 62, 1417–1422 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wanner, C., Richardson, D., Fouque, D. & Stenvinkel, P. OPTA-Influence of inflammation/infection on anemia therapy in hemodialysis patients. Nephrol. Dial. Transplant. 22 (Suppl. 3), iii7–iii12 (2007).

    CAS  Google Scholar 

  95. Stenvinkel, P. et al. Inflammation and outcome in end-stage renal failure: does female gender constitute a survival advantage? Kidney Int. 62, 1791–1798 (2002).

    Article  PubMed  Google Scholar 

  96. Kawaguchi, T. et al. C-reactive protein and mortality in hemodialysis patients: the dialysis outcomes and practice patterns study (DOPPS). Nephron Clin. Pract. 117, c167–c178 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Zimmermann, J., Herrlinger, S., Pruy, A., Metzger, T. & Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 55, 648–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Mallamaci, F., Tripepi, G., Cutrupi, S., Malatino, L. S. & Zoccali, C. Prognostic value of combined use of biomarkers of inflammation, endothelial dysfunction, and myocardiopathy in patients with ESRD. Kidney Int. 67, 2330–2337 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Tripepi, G., Jager, K. J., Dekker, F. W. & Zoccali, C. Statistical methods for the assessment of prognostic biomarkers (Part II): calibration and re-classification. Nephrol. Dial. Transplant. 25, 1402–1405 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Tripepi, G., Jager, K. J., Dekker, F. W. & Zoccali, C. Statistical methods for the assessment of prognostic biomarkers (Part I): discrimination. Nephrol. Dial. Transplant. 25, 1399–1401 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Blankenberg, S. et al. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation 121, 2388–2397 (2010).

    Article  PubMed  Google Scholar 

  102. Carrero, J. J. & Stenvinkel, P. Persistent inflammation as a catalyzt for other risk factors in chronic kidney disease: a hypothesis proposal. Clin. J. Am. Soc. Nephrol. 4 (Suppl. 1), S49–S55 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Gunnell, J., Yeun, J. Y., Depner, T. A. & Kaysen, G. A. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am. J. Kidney Dis. 33, 63–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Wei, M., Bargman, J. M. & Oreopoulos, D. G. Factors related to erythropoietin hypo-responsiveness in patients on chronic peritoneal dialysis. Int. Urol. Nephrol. 39, 935–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Matias, P. J. et al. Cholecalciferol supplementation in hemodialysis patients: effects on mineral metabolism, inflammation, and cardiac dimension parameters. Clin. J. Am. Soc. Nephrol. 5, 905–911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Caglar, K. et al. Short-term treatment with sevelamer increases serum fetuin-a concentration and improves endothelial dysfunction in chronic kidney disease stage 4 patients. Clin. J. Am. Soc. Nephrol. 3, 61–68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yamamoto, D., Takai, S., Hirahara, I. & Kusano, E. Captopril directly inhibits matrix metalloproteinase-2 activity in continuous ambulatory peritoneal dialysis therapy. Clin. Chim. Acta 411, 762–764 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Perkins, R. M. et al. Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am. J. Kidney Dis. 53, 606–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Fellstrom, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Muntinghe, F. L. et al. CCR5 deletion protects against inflammation-associated mortality in dialysis patients. J. Am. Soc. Nephrol. 20, 1641–1649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muntinghe, F. L., Carrero, J. J., Navis, G. & Stenvinkel, P. TNF-α levels are not increased in inflamed patients carrying the CCR5 deletion 32. Cytokine 53, 16–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Scheinecker, C., Redlich, K. & Smolen, J. S. Cytokines as therapeutic targets: advances and limitations. Immunity 28, 440–444 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Don, B. R. et al. The pharmacokinetics of etanercept in patients with end-stage renal disease on hemodialysis. J. Pharm. Pharmacol. 57, 1407–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Don, B. R. et al. The effect of etanercept on suppression of the systemic inflammatory response in chronic hemodialysis patients. Clin. Nephrol. 73, 431–438 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Cheung, A. K. et al. Effects of high-flux hemodialysis on clinical outcomes: results of the HEMO study. J. Am. Soc. Nephrol. 14, 3251–3263 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. C. A. M. van der Hoorn–van Velthoven from the library at Leiden University Medical Centre for their assistance in the literature study. C. Meuwese's research stay at Karolinska Institutet was carried out under the Erasmus agreement between Leiden University Medical Center and Karolinska Institutet. Support for that stay was obtained from the Dutch Kidney Foundation and the Jo Keur foundation of the Leiden University Medical Centre. The authors and some of the studies hereby presented were partially supported by the Westman's and Loo and Hans Ostermans' foundations, The Heart and Lung Foundation, the Swedish Medical Research Council (Vetenskapsrådet) and Centre for Gender Medicine at Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the discussion of content, and reviewed/edited the manuscript before submission. C. L. Meuwese and J. J. Carrero wrote the article, and F. W. Dekker and P. Stenvinkel revised and developed the draft to its final form.

Corresponding author

Correspondence to Juan J. Carrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meuwese, C., Stenvinkel, P., Dekker, F. et al. Monitoring of inflammation in patients on dialysis: forewarned is forearmed. Nat Rev Nephrol 7, 166–176 (2011). https://doi.org/10.1038/nrneph.2011.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research