Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Statins, inflammation and kidney disease

Abstract

Inflammation is highly prevalent in patients with chronic kidney disease (CKD) and is consistently associated with cardiovascular morbidity and mortality. Clinical event rates increase with declining renal function and activation of the acute-phase response. Statins are potent anti-inflammatory drugs that reduce the incidence of cardiovascular events. Owing to the increased prevalence of inflammation in patients with CKD and the potent effect of statins in individuals with elevated levels of C-reactive protein, these drugs should be especially effective in patients with CKD. Whereas data indicate that pravastatin may prevent loss of kidney function to a greater extent in individuals with evidence of increased inflammation than in those who show no inflammation, two large, randomized statin trials in patients on hemodialysis found no benefit of statin therapy, neither in the whole study group nor after stratifying for inflammation. Irrespective of inflammation, guidelines recommend treatment of dyslipidemia in early stages of CKD, which is supported by results from recent meta-analyses, and the Study of Heart and Renal Protection (SHARP), a large, randomized, placebo-controlled trial.

Key Points

  • Levels of C-reactive protein (CRP) increase with failing kidney function and are higher in patients on dialysis than in patients with coronary heart disease or healthy individuals

  • High CRP levels in patients on dialysis reflect underlying comorbidities and are the result of a chronic acute-phase response in various organ systems of the body

  • CRP levels are a predictor of all-cause mortality and cardiovascular events in patients with chronic kidney disease (CKD); however, data regarding CRP and loss of kidney function are not unequivocal

  • Statins have potent anti-inflammatory effects in patients with CKD, with individual statins having different effects on proteinuria and the loss of kidney function

  • At present, no data support an especially beneficial effect of statins in patients on hemodialysis who show evidence of inflammation

  • The primary outcome of SHARP (major atherosclerotic events) was reduced in patients with CKD stages 3–5 who were treated with simvastatin and ezetimibe, supporting guideline recommendations on management of hyperlipidemia in these patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between median CRP levels and estimated mean GFR.
Figure 2: Impaired kidney function leading to premature death.
Figure 3: Median high-sensitivity CRP levels in hemodialysis patients on placebo compared with statin treatment from baseline to 12 months.
Figure 4: Hazard ratios for the primary end point (cardiac death, nonfatal myocardial infarction or nonfatal stroke) in subgroups of patients according to baseline concentrations of high-sensitivity CRP (tertiles of CRP within the AURORA study).

Similar content being viewed by others

References

  1. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kaptoge, S. et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Abedini, S. et al. Inflammation in renal transplantation. Clin. J. Am. Soc. Nephrol. 4, 1246–1254 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. Hung, A. M. et al. CRP polymorphisms and progression of chronic kidney disease in African Americans. Clin. J. Am. Soc. Nephrol. 5, 24–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iseki, K., Tozawa, M., Yoshi, S. & Fukiyama, K. Serum C-reactive protein (CRP) and risk of death in chronic dialysis patients. Nephrol. Dial. Transplant. 14, 1956–1960 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Krane, V. et al. Effect of atorvastatin on inflammation and outcome in patients with type 2 diabetes mellitus on hemodialysis. Kidney Int. 74, 1461–1467 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Yeun, J. Y., Levine, R. A., Mantadilok, V. & Kaysen, G. A. C-Reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 35, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Zimmermann, J., Herrlinger, S., Pruy, A., Metzger, T. & Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 55, 648–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Stel, V. S., Kramer, A., Zoccali, C. & Jager, K. J. The 2007 ERA-EDTA Registry Annual Report—a Précis. NDT Plus 2, 514–521 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 45, S1–S153 (2005).

  15. Barany, P. Inflammation, serum C-reactive protein, and erythropoietin resistance. Nephrol. Dial. Transplant. 16, 224–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Gupta, R. et al. Statin use and sepsis events [corrected] in patients with chronic kidney disease. JAMA 297, 1455–1464 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Shlipak, M. G. et al. Cystatin-C and inflammatory markers in the ambulatory elderly. Am. J. Med. 118, 1416 (2005).

    Article  PubMed  Google Scholar 

  18. Tonelli, M., Sacks, F., Pfeffer, M., Jhangri, G. S. & Curhan, G. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int. 68, 237–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Sarnak, M. J. et al. Serum C-reactive protein and leptin as predictors of kidney disease progression in the Modification of Diet in Renal Disease Study. Kidney Int. 62, 2208–2215 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Landray, M. J. et al. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am. J. Kidney Dis. 43, 244–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ducloux, D., Bresson-Vautrin, C., Kribs, M., Abdelfatah, A. & Chalopin, J. M. C-reactive protein and cardiovascular disease in peritoneal dialysis patients. Kidney Int. 62, 1417–1422 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Nascimento, M. M., Pecoits-Filho, R., Lindholm, B., Riella, M. C. & Stenvinkel, P. Inflammation, malnutrition and atherosclerosis in end-stage renal disease: a global perspective. Blood Purif. 20, 454–458 (2002).

    Article  PubMed  Google Scholar 

  24. Pearson, T. A. et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107, 499–511 (2003).

    Article  PubMed  Google Scholar 

  25. Sela, S. et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2431–2438 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zoccali, C., Mallamaci, F. & Tripepi, G. Inflammation and atherosclerosis in end-stage renal disease. Blood Purif. 21, 29–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, Y. et al. IL-6 haplotypes, inflammation, and risk for cardiovascular disease in a multiethnic dialysis cohort. J. Am. Soc. Nephrol. 17, 863–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Zoccali, C., Tripepi, G. & Mallamaci, F. Dissecting inflammation in ESRD: do cytokines and C-reactive protein have a complementary prognostic value for mortality in dialysis patients? J. Am. Soc. Nephrol. 17, S169–S173 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Papanicolaou, D. A., Wilder, R. L., Manolagas, S. C. & Chrousos, G. P. The pathophysiologic roles of interleukin-6 in human disease. Ann. Intern. Med. 128, 127–137 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Tzoulaki, I. et al. C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study. Circulation 112, 976–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Snaedal, S. et al. Comorbidity and acute clinical events as determinants of C-reactive protein variation in hemodialysis patients: implications for patient survival. Am. J. Kidney Dis. 53, 1024–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. de Beer, F. C. et al. Low density lipoprotein and very low density lipoprotein are selectively bound by aggregated C-reactive protein. J. Exp. Med. 156, 230–242 (1982).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. X., Cliff, W. J., Schoefl, G. I. & Higgins, G. Coronary C-reactive protein distribution: its relation to development of atherosclerosis. Atherosclerosis 145, 375–379 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Zacho, J. et al. Genetically elevated C-reactive protein and ischemic vascular disease. N. Engl. J. Med. 359, 1897–1908 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Wensley, F. et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342, d548 (2011).

    Article  PubMed  Google Scholar 

  36. Barreto, D. V. et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 77, 550–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Noh, H. et al. Serum C-reactive protein: a predictor of mortality in continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 18, 387–394 (1998).

    CAS  PubMed  Google Scholar 

  38. Wang, A. Y. et al. Is a single time point C-reactive protein predictive of outcome in peritoneal dialysis patients? J. Am. Soc. Nephrol. 14, 1871–1879 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Owen, W. F. & Lowrie, E. G. C-reactive protein as an outcome predictor for maintenance hemodialysis patients. Kidney Int. 54, 627–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Herzig, K. A. et al. Is C-reactive protein a useful predictor of outcome in peritoneal dialysis patients? J. Am. Soc. Nephrol. 12, 814–821 (2001).

    CAS  PubMed  Google Scholar 

  41. Pifer, T. B. et al. Mortality risk in hemodialysis patients and changes in nutritional indicators: DOPPS. Kidney Int. 62, 2238–2245 (2002).

    Article  PubMed  Google Scholar 

  42. Reddan, D. N. et al. White blood cells as a novel mortality predictor in haemodialysis patients. Nephrol. Dial. Transplant. 18, 1167–1173 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Menon, V. et al. Relationship between C-reactive protein, albumin, and cardiovascular disease in patients with chronic kidney disease. Am. J. Kidney Dis. 42, 44–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Janssen, U. et al. Activation of the acute phase response and complement C3 in patients with IgA nephropathy. Am. J. Kidney Dis. 35, 21–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Bolton, C. H. et al. Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol. Dial. Transplant. 16, 1189–1197 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Pereira, B. J. et al. Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 45, 890–896 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Pecoits-Filho, R. et al. Associations between circulating inflammatory markers and residual renal function in CRF patients. Am. J. Kidney Dis. 41, 1212–1218 (2003).

    Article  PubMed  Google Scholar 

  48. Stam, F. et al. Impaired renal function is associated with markers of endothelial dysfunction and increased inflammatory activity. Nephrol. Dial. Transplant. 18, 892–898 (2003).

    Article  PubMed  Google Scholar 

  49. Oberg, B. P. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 65, 1009–1016 (2004).

    Article  PubMed  Google Scholar 

  50. Shlipak, M. G. et al. Cardiovascular disease risk status in elderly persons with renal insufficiency. Kidney Int. 62, 997–1004 (2002).

    Article  PubMed  Google Scholar 

  51. Stuveling, E. M. et al. C-reactive protein is associated with renal function abnormalities in a non-diabetic population. Kidney Int. 63, 654–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Menon, V. et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 68, 766–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sacks, F. M. et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N. Engl. J. Med. 335, 1001–1009 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Bash, L. D. et al. Inflammation, hemostasis, and the risk of kidney function decline in the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 53, 596–605 (2009).

    Article  PubMed  Google Scholar 

  55. Erlinger, T. P. et al. Leukocytosis, hypoalbuminemia, and the risk for chronic kidney disease in US adults. Am. J. Kidney Dis. 42, 256–263 (2003).

    Article  PubMed  Google Scholar 

  56. Keller, C. et al. Inflammatory biomarkers and decline in kidney function in the elderly: the Cardiovascular Health Study. Nephrol. Dial. Transplant. 25, 119–124 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Fried, L. et al. Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals. J. Am. Soc. Nephrol. 15, 3184–3191 (2004).

    Article  PubMed  Google Scholar 

  58. Coll, E. et al. Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment. Am. J. Kidney Dis. 36, 29–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Vazquez, M. A., Jeyarajah, D. R., Kielar, M. L. & Lu, C. Y. Long-term outcomes of renal transplantation: a result of the original endowment of the donor kidney and the inflammatory response to both alloantigens and injury. Curr. Opin. Nephrol. Hypertens. 9, 643–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Cottone, S. et al. Inflammation and endothelial activation are linked to renal function in long-term kidney transplantation. Transpl. Int. 20, 82–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Krüger, B. et al. Is inflammation prior to renal transplantation predictive for cardiovascular and renal outcomes? Atherosclerosis 210, 637–642 (2010).

    Article  PubMed  CAS  Google Scholar 

  62. Winkelmayer, W. C. et al. C-reactive protein and body mass index independently predict mortality in kidney transplant recipients. Am. J. Transplant. 4, 1148–1154 (2004).

    Article  PubMed  Google Scholar 

  63. Krüger, B. et al. No effect of C-reactive protein (CRP) haplotypes on CRP levels and post-transplant morbidity and mortality in renal transplantation. Transpl. Int. 21, 452–458 (2008).

    Article  PubMed  CAS  Google Scholar 

  64. Perez, R. V. et al. Pretransplant systemic inflammation and acute rejection after renal transplantation. Transplantation 69, 869–874 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ozdemir, N. F., Elsurer, R., Ibis, A., Arat, Z. & Haberal, M. Serum C-reactive protein surge in renal transplant recipients: link with allograft survival. Transplant. Proc. 39, 934–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. van Ree, R. M. et al. Elevated levels of C-reactive protein independently predict accelerated deterioration of graft function in renal transplant recipients. Nephrol. Dial. Transplant. 22, 246–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Morrow, D. A. et al. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. Circulation 114, 281–288 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Ridker, P. M. et al. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 98, 839–844 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Kinlay, S. Low-density lipoprotein-dependent and -independent effects of cholesterol-lowering therapies on C-reactive protein: a meta-analysis. J. Am. Coll. Cardiol. 49, 2003–2009 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Chang, J. W. et al. Effects of simvastatin on high-sensitivity C-reactive protein and serum albumin in hemodialysis patients. Am. J. Kidney Dis. 39, 1213–1217 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Danesh, J. et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Ichihara, A. et al. Fluvastatin prevents development of arterial stiffness in haemodialysis patients with type 2 diabetes mellitus. Nephrol. Dial. Transplant. 17, 1513–1517 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Vernaglione, L., Cristofano, C., Muscogiuri, P. & Chimienti, S. Does atorvastatin influence serum C-reactive protein levels in patients on long-term hemodialysis? Am. J. Kidney Dis. 43, 471–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Ridker, P. M., Rifai, N., Pfeffer, M. A., Sacks, F. & Braunwald, E. Long-term effects of pravastatin on plasma concentration of C-reactive protein. The Cholesterol and Recurrent Events (CARE) Investigators. Circulation 100, 230–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Arabul, M. et al. Effect of fluvastatin on serum prohepcidin levels in patients with end-stage renal disease. Clin. Biochem. 41, 1055–1058 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Sezer, M. T. et al. Short-term effect of simvastatin treatment on inflammatory parameters in peritoneal dialysis patients. Scand. J. Urol. Nephrol. 41, 436–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Malyszko, J., Malyszko, J. S., Hryszko, T. & Mysliwiec, M. Increased soluble CD40L levels are reduced by long-term simvastatin treatment in peritoneally dialyzed patients. Blood Coagul. Fibrinolysis 15, 463–467 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Kumar, S., Raftery, M., Yaqoob, M. & Fan, S. L. Anti-inflammatory effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors (statins) in peritoneal dialysis patients. Perit. Dial. Int. 27, 283–287 (2007).

    CAS  PubMed  Google Scholar 

  80. Di Lullo, L. et al. Effects of fluvastatin treatment on lipid profile, C-reactive protein trend, and renal function in dyslipidemic patients with chronic renal failure. Adv. Ther. 22, 601–612 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Sawara, Y. et al. Effects of lipid-lowering therapy with rosuvastatin on atherosclerotic burden in patients with chronic kidney disease. Intern. Med. 47, 1505–1510 (2008).

    Article  PubMed  Google Scholar 

  82. Verma, A., Ranganna, K. M., Reddy, R. S., Verma, M. & Gordon, N. F. Effect of rosuvastatin on C-reactive protein and renal function in patients with chronic kidney disease. Am. J. Cardiol. 96, 1290–1292 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Goicoechea, M. et al. Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J. Am. Soc. Nephrol. 17, S231–S235 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Panichi, V. et al. In vivo and in vitro effects of simvastatin on inflammatory markers in pre-dialysis patients. Nephrol. Dial. Transplant. 21, 337–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Bayes, B. et al. Effect of low doses of atorvastatin on adiponectin, glucose homeostasis, and clinical inflammatory markers in kidney transplant recipients. Transplant. Proc. 37, 3808–3812 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Holdaas, H. et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet 361, 2024–2031 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Ridker, P. M. et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N. Engl. J. Med. 344, 1959–1965 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Ridker, P. M. et al. C-reactive protein levels and outcomes after statin therapy. N. Engl. J. Med. 352, 20–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Arici, M. & Walls, J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int. 59, 407–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Ridker, P. M. et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373, 1175–1182 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Nissen, S. E. et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N. Engl. J. Med. 352, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Mega, J. L. et al. Cholesterol, C-reactive protein, and cerebrovascular events following intensive and moderate statin therapy. J. Thromb. Thrombolysis 22, 71–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Ridker, P. M. et al. Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: an analysis of the PROVE-IT TIMI-22 trial. J. Am. Coll. Cardiol. 45, 1644–1648 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ridker, P. M., MacFadyen, J., Cressman, M. & Glynn, R. J. Efficacy of rosuvastatin among men and women with moderate chronic kidney disease and elevated high-sensitivity C-reactive protein: a secondary analysis from the JUPITER (Justification for the Use of Statins in Prevention-an Intervention Trial Evaluating Rosuvastatin) trial. J. Am. Coll. Cardiol. 55, 1266–1273 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Strippoli, G. F. et al. Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. BMJ 336, 645–651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Navaneethan, S. D. et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD007784. doi:10.1002/14651858.CD007784 (2009).

  97. Baigent, C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Tonelli, M., Moye, L., Sacks, F. M., Cole, T. & Curhan, G. C. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J. Am. Soc. Nephrol. 14, 1605–1613 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Tonelli, M., Moye, L., Sacks, F. M., Kiberd, B. & Curhan, G. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann. Intern. Med. 138, 98–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Tonelli, M. et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 110, 1557–1563 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Tonelli, M. et al. Effect of pravastatin on rate of kidney function loss in people with or at risk for coronary disease. Circulation 112, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Tonelli, M. et al. Effect of pravastatin in people with diabetes and chronic kidney disease. J. Am. Soc. Nephrol. 16, 3748–3754 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Sandhu, S., Wiebe, N., Fried, L. F. & Tonelli, M. Statins for improving renal outcomes: a meta-analysis. J. Am. Soc. Nephrol. 17, 2006–2016 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Navaneethan, S. D. et al. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD004289. doi:10.1002/14651858.CD004289.pub4 (2009).

  105. Navaneethan, S. D. et al. HMG CoA reductase inhibitors (statins) for kidney transplant recipients. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD005019. doi:10.1002/14651858.CD005019.pub3 (2009).

  106. Huskey, J. et al. Effect of simvastatin on kidney function loss in patients with coronary heart disease: findings from the Scandinavian Simvastatin Survival Study (4S). Atherosclerosis 205, 202–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Holdaas, H., Wanner, C., Abletshauser, C., Gimpelewicz, C. & Isaacsohn, J. The effect of fluvastatin on cardiac outcomes in patients with moderate to severe renal insufficiency: a pooled analysis of double-blind, randomized trials. Int. J. Cardiol. 117, 64–74 (2007).

    Article  PubMed  Google Scholar 

  108. Rahman, M. et al. Progression of kidney disease in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin versus usual care: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Am. J. Kidney Dis. 52, 412–424 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kendrick, J. et al. Effect of lovastatin on primary prevention of cardiovascular events in mild CKD and kidney function loss: a post hoc analysis of the Air Force/Texas Coronary Atherosclerosis Prevention Study. Am. J. Kidney Dis. 55, 42–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Athyros, V. G. et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek atorvastatin and coronary heart disease evaluation (GREACE) study. J. Clin. Pathol. 57, 728–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  112. de Zeeuw, D. Different renal protective effects of atorvastatin and rosuvastatin in diabetic and non-diabetic renal patients with proteinuria. Results of the PLANET trials. Presented at the XLVII ERA-EDTA Congress 2010.

  113. Del Vecchio, L., Pozzoni, P., Andrulli, S. & Locatelli, F. Inflammation and resistance to treatment with recombinant human erythropoietin. J. Ren. Nutr. 15, 137–141 (2005).

    Article  PubMed  Google Scholar 

  114. KDOQI & National Kidney Foundation. II. Clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease in adults. Am. J. Kidney Dis. 47, S16–S85 (2006).

  115. Locatelli, F. et al. Revised European best practice guidelines for the management of anaemia in patients with chronic renal failure. Nephrol. Dial. Transplant. 19 (Suppl. 2), ii1–ii47 (2004).

    PubMed  Google Scholar 

  116. Owen, W. F. & Lowrie, E. G. C-reactive protein as an outcome predictor for maintenance hemodialysis patients. Kidney Int. 54, 627–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Bárány, P., Divino Filho, J. C. & Bergström, J. High C-reactive protein is a strong predictor of resistance to erythropoietin in hemodialysis patients. Am. J. Kidney Dis. 29, 565–568 (1997).

    Article  PubMed  Google Scholar 

  118. Gunnell, J., Yeun, J. Y., Depner, T. A. & Kaysen, G. A. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am. J. Kidney Dis. 33, 63–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Beguin, Y. et al. Early prediction of response to recombinant human erythropoietin in patients with the anemia of renal failure by serum transferrin receptor and fibrinogen. Blood 82, 2010–2016 (1993).

    CAS  PubMed  Google Scholar 

  120. Kalantar-Zadeh, K. et al. Effect of malnutrition-inflammation complex syndrome on EPO hyporesponsiveness in maintenance hemodialysis patients. Am. J. Kidney Dis. 42, 761–773 (2003).

    Article  PubMed  Google Scholar 

  121. Kwack, C. & Balakrishnan, V. S. Managing erythropoietin hyporesponsiveness. Semin. Dial. 19, 146–151 (2006).

    Article  PubMed  Google Scholar 

  122. Locatelli, F. et al. Nutritional-inflammation status and resistance to erythropoietin therapy in haemodialysis patients. Nephrol. Dial. Transplant. 21, 991–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Macdougall, I. C. & Cooper, A. C. Hyporesponsiveness to erythropoietic therapy due to chronic inflammation. Eur. J. Clin. Invest. 35 (Suppl. 3), 32–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Malyszko, J., Malyszko, J. S., Hryszko, T., Pawlak, K. & Mysliwiec, M. Is hepcidin a link between anemia, inflammation and liver function in hemodialyzed patients? Am. J. Nephrol. 25, 586–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Casadevall, N. Cellular mechanism of resistance to erythropoietin. Nephrol. Dial. Transplant. 10 (Suppl. 6), 27–30 (1995).

    Article  PubMed  Google Scholar 

  126. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Himmelfarb, J., Stenvinkel, P., Ikizler, T. A. & Hakim, R. M. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 62, 1524–1538 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Delaby, C., Pilard, N., Goncalves, A. S., Beaumont, C. & Canonne-Hergaux, F. Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood 106, 3979–3984 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Miller, C. B., Jones, R. J., Piantadosi, S., Abeloff, M. D. & Spivak, J. L. Decreased erythropoietin response in patients with the anemia of cancer. N. Engl. J. Med. 322, 1689–1692 (1990).

    Article  CAS  PubMed  Google Scholar 

  131. Khankin, E. V. et al. Soluble erythropoietin receptor contributes to erythropoietin resistance in end-stage renal disease. PLoS ONE 5, e9246 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Jelkmann, W., Pagel, H., Wolff, M. & Fandrey, J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci. 50, 301–308 (1992).

    Article  CAS  PubMed  Google Scholar 

  133. de Francisco, A. L., Stenvinkel, P. & Vaulont, S. Inflammation and its impact on anaemia in chronic kidney disease: from haemoglobin variability to hyporesponsiveness. NDT Plus 2, i18–i26 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sirken, G., Kung, S. C. & Raja, R. Decreased erythropoietin requirements in maintenance hemodialysis patients with statin therapy. ASAIO J. 49, 422–425 (2003).

    CAS  PubMed  Google Scholar 

  135. Tsouchnikas, I. et al. Beneficial effect of atorvastatin on erythropoietin responsiveness in maintenance haemodialysis patients. Nephrology (Carlton) 14, 560–564 (2009).

    Article  CAS  Google Scholar 

  136. Chiang, C. K. et al. Atorvastatin increases erythropoietin-stimulating agent hyporesponsiveness in maintenance hemodialysis patients: role of anti-inflammation effects. Am. J. Nephrol. 29, 392–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Macdougall, I. C., Lilienthal, J., Krane, V., Drechsler, C. & Wanner, C. Atorvastatin does not improve ESA responsiveness in haemodialysis patients: a post hoc analysis from the 4D randomised controlled trial [abstract]. American Society of Nephrology Renal Week SA-PO2404 (2009).

  138. Tleyjeh, I. M. et al. Statins for the prevention and treatment of infections: a systematic review and meta-analysis. Arch. Intern. Med. 169, 1658–1667 (2009).

    Article  PubMed  Google Scholar 

  139. Aikawa, M. et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103, 276–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Niessner, A. et al. Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. Atherosclerosis 189, 408–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Kwak, B., Mulhaupt, F., Myit, S. & Mach, F. Statins as a newly recognized type of immunomodulator. Nat. Med. 6, 1399–1402 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat. Med. 7, 687–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Istvan, E. S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Cines, D. B. et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527–3561 (1998).

    CAS  PubMed  Google Scholar 

  145. Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Laufs, U. & Liao, J. K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem. 273, 24266–24271 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Catron, D. M. et al. Salmonella enterica serovar Typhimurium requires nonsterol precursors of the cholesterol biosynthetic pathway for intracellular proliferation. Infect. Immun. 72, 1036–1042 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. del Real, G. et al. Statins inhibit HIV-1 infection by down-regulating Rho activity. J. Exp. Med. 200, 541–547 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Potena, L. et al. Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells. Circulation 109, 532–536 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Gyetvai, A. et al. Lovastatin possesses a fungistatic effect against Candida albicans, but does not trigger apoptosis in this opportunistic human pathogen. FEMS Yeast Res. 6, 1140–1148 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. US Renal Data System. 2009 ADR Reference Tables [online], (2009).

  152. Wanner, C. On statin treatment to prevent sepsis in dialysis patients. Am. J. Kidney Dis. 50, 700–702 (2007).

    Article  PubMed  Google Scholar 

  153. Jonathan, E. et al. C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study. Lancet 377, 469–476 (2011).

    Article  CAS  Google Scholar 

  154. Sharp Collaborative Group. Study of Heart and Renal Protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am. Heart J. 160, 785–794 (2010).

  155. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 41, S1–S91 (2003).

  156. Burmeister, J. E., Miltersteiner, D. R. & Campos, B. M. Rosuvastatin in hemodialysis: short-term effects on lipids and C-reactive protein. J. Nephrol. 22, 83–89 (2009).

    PubMed  Google Scholar 

  157. Ford, I. et al. Reduced glomerular filtration rate and its association with clinical outcome in older patients at risk of vascular events: secondary analysis. PLoS Med. 6, e16 (2009).

    Article  PubMed  Google Scholar 

  158. Panichi, V. et al. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron 91, 594–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Woloshin, S. & Schwartz, L. M. Distribution of C-reactive protein values in the United States. N. Engl. J. Med. 352, 1611–1613 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Ramirez, R. et al. Stress-induced premature senescence in mononuclear cells from patients on long-term hemodialysis. Am. J. Kidney Dis. 45, 353–359 (2005).

    Article  PubMed  Google Scholar 

  161. Tsirpanlis, G. et al. Serum oxidized low-density lipoprotein is inversely correlated to telomerase activity in peripheral blood mononuclear cells of haemodialysis patients. Nephrology (Carlton) 11, 506–509 (2006).

    Article  CAS  Google Scholar 

  162. Tsirpanlis, G. et al. Telomerase activity is decreased in peripheral blood mononuclear cells of hemodialysis patients. Am. J. Nephrol. 26, 91–96 (2006).

    Article  PubMed  Google Scholar 

  163. Boxall, M. C., Goodship, T. H., Brown, A. L., Ward, M. C. & von Zglinicki, T. Telomere shortening and haemodialysis. Blood Purif. 24, 185–189 (2006).

    Article  PubMed  Google Scholar 

  164. Tsirpanlis, G. Cellular senescence, cardiovascular risk, and CKD: a review of established and hypothetical interconnections. Am. J. Kidney Dis. 51, 131–144 (2008).

    Article  PubMed  Google Scholar 

  165. Carrero, J. J. et al. Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J. Intern. Med. 263, 302–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Asselbergs, F. W. et al. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation 110, 2809–2816 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Nakamura, H. et al. Pravastatin and cardiovascular risk in moderate chronic kidney disease. Atherosclerosis 206, 512–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Lemos, P. A. et al. Long-term fluvastatin reduces the hazardous effect of renal impairment on four-year atherosclerotic outcomes (a LIPS substudy). Am. J. Cardiol. 95, 445–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Ruggenenti, P. et al. Effects of add-on fluvastatin therapy in patients with chronic proteinuric nephropathy on dual renin-angiotensin system blockade: the ESPLANADE trial. Clin. J. Am. Soc. Nephrol. 5, 1928–1938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Collins, R., Armitage, J., Parish, S., Sleigh, P. & Peto, R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361, 2005–2016 (2003).

    Article  PubMed  Google Scholar 

  171. Baigent, C. et al. First United Kingdom Heart and Renal Protection (UK-HARP-I) study: biochemical efficacy and safety of simvastatin and safety of low-dose aspirin in chronic kidney disease. Am. J. Kidney Dis. 45, 473–484 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Landray, M. et al. The second United Kingdom Heart and Renal Protection (UK-HARP-II) Study: a randomized controlled study of the biochemical safety and efficacy of adding ezetimibe to simvastatin as initial therapy among patients with CKD. Am. J. Kidney Dis. 47, 385–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Armitage, J. et al. Intensive lowering of LDL cholesterol with 80 mg versus 20 mg simvastatin daily in 12,064 survivors of myocardial infarction: a double-blind randomised trial. Lancet 376, 1658–1669 (2010).

    Article  PubMed  CAS  Google Scholar 

  174. Shepherd, J. et al. Effect of intensive lipid lowering with atorvastatin on renal function in patients with coronary heart disease: the Treating to New Targets (TNT) study. Clin. J. Am. Soc. Nephrol. 2, 1131–1139 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Shepherd, J. et al. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J. Am. Coll. Cardiol. 51, 1448–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Koren, M. J. et al. Focused atorvastatin therapy in managed-care patients with coronary heart disease and CKD. Am. J. Kidney Dis. 53, 741–750 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Colhoun, H. M. et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am. J. Kidney Dis. 54, 810–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  178. Fassett, R. G., Robertson, I. K., Ball, M. J., Geraghty, D. P. & Coombes, J. S. Effect of atorvastatin on kidney function in chronic kidney disease: a randomised double-blind placebo-controlled trial. Atherosclerosis 213, 218–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Holme, I. et al. Cardiovascular outcomes and their relationships to lipoprotein components in patients with and without chronic kidney disease: results from the IDEAL trial. J. Intern. Med. 267, 567–575 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Harris, K. P., Wheeler, D. C. & Chong, C. C. A placebo-controlled trial examining atorvastatin in dyslipidemic patients undergoing CAPD. Kidney Int. 61, 1469–1474 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Stegmayr, B. G. et al. Low-dose atorvastatin in severe chronic kidney disease patients: a randomized, controlled endpoint study. Scand. J. Urol. Nephrol. 39, 489–497 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Holmberg, B. et al. Safety and efficacy of atorvastatin in patients with severe renal dysfunction. Scand. J. Urol. Nephrol. 39, 503–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Han, S. H. et al. Combined vascular effects of HMG-CoA reductase inhibitor and angiotensin receptor blocker in non-diabetic patients undergoing peritoneal dialysis. Nephrol. Dial. Transplant. doi:10.1093/ndt/gfr108.

    Article  CAS  Google Scholar 

  184. Holdaas, H. et al. Effect of fluvastatin on acute renal allograft rejection: a randomized multicenter trial. Kidney Int. 60, 1990–1997 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Kasiske, B. L. et al. The effects of lipid-lowering agents on acute renal allograft rejection. Transplantation 72, 223–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Schmidt, W. M., Spiel, A. O., Jilma, B., Wolzt, M. & Muller, M. In-vivo effects of simvastatin and rosuvastatin on global gene expression in peripheral blood leucocytes in a human inflammation model. Pharmacogenet. Genomics 18, 109–120 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

V. Krane and C. Wanner contributed equally to researching data for the article, discussion of content, writing, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Christoph Wanner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Lists studies including more than 10 participants with CKD on statins. (DOC 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krane, V., Wanner, C. Statins, inflammation and kidney disease. Nat Rev Nephrol 7, 385–397 (2011). https://doi.org/10.1038/nrneph.2011.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing