Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What are the anticoagulation options for intermittent hemodialysis?

Abstract

Prevention of clotting in the extracorporeal circuit was one of the major hurdles that had to be overcome to enable the expansion of routine outpatient hemodialysis to free-standing satellite centers and the home. Unfractionated heparin, the anticoagulant of choice for many years, is now being replaced by low-molecular-weight heparins (LMWHs) in an expanding number of countries. This trend is attributable to the ease and convenience of the administration of LMWHs coupled with their reliability and predictability of dosing. However, the choice of which LMWH to use depends on the duration and frequency of the dialysis sessions. For patients who are allergic to heparin or have heparin-induced thrombocytopenia, alternative anticoagulants—the direct thrombin inhibitors and heparinoids—are now available. These agents either have short half-lives (and therefore need to be delivered by infusions), or prolonged half-lives, which allows simple bolus administration, but increases the risk of drug accumulation, overdosage and hemorrhage. In patients at risk of bleeding, regional anticoagulants enable anticoagulation to be limited to the extracorporeal circuit. Prostanoids and nafamostat mesilate are expensive regional anticoagulants, and citrate infusions add complexity to the procedure. A citrate-based dialyzate has now been introduced that might enable heparin-free dialysis or reduce systemic anticoagulant requirements.

Key Points

  • Activation of leukocytes and platelets initiate extracorporeal clotting, a problem that has made it difficult to carry out dialysis in an outpatient setting

  • The anticoagulant effects of low-molecular-weight heparins are more predictable than those of unfractionated heparin

  • Unfractionated heparin and low-molecular-weight heparins remain the cheapest anticoagulants

  • Citrate-based dialyzate might permit short anticoagulant-free dialysis sessions

  • Anticoagulant-coated dialyzers might also enable short dialysis sessions to be performed without the use of systemic anticoagulants

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Vroman effect.
Figure 2: Generation of thrombin via activation of leukocytes and platelets in the extracorporeal circuit.
Figure 3: Action of LMWHs on the traditional coagulation cascades, showing coagulation factors PKK and HMWK.
Figure 4: Plasma concentration of anti-factor Xa activity (anti-Xa) measured in blood taken postdialyzer.

Similar content being viewed by others

References

  1. Gordon, L. A., Perkins, H. A., Richards, V., Rukes, J. M. & Simon, E. R. Studies in regional heparinization. II. Artificial-kidney hemodialysis without systemic heparinization; preliminary report of a method using simultaneous infusion of heparin and protamine. N. Engl. J. Med. 255, 1063–1066 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Davenport, A. Membrane designs and composition for hemodialysis, hemofiltration and hemodialfiltration: past, present and future. Minerva Urol. Nefrol. 62, 29–40 (2010).

    CAS  PubMed  Google Scholar 

  3. Vroman, L. Effect of absorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196, 476–477 (1962).

    Article  CAS  PubMed  Google Scholar 

  4. Swars, H. et al. Acute dialysis: PMN-elastase as a new parameter for controlling individual anticoagulation with low molecular weight heparin (Fragmin). Intensive Care Med. 17, 52–56 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Verbeelen, D. et al. Evaluation of platelets and hemostasis during hemodialysis with six different membranes. Nephron 59, 567–572 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Niemetz, J. & Fani, K. Thrombogenic activity of leukocytes. Blood 42, 47–59 (1973).

    CAS  PubMed  Google Scholar 

  7. Rodman, N. F., Wolf, R. H. & Mason, R. G. Venous thrombosis on prosthetic surfaces. Evolution and blood coagulation studies in a nonhuman primate model. Am. J. Pathol. 75, 229–242 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilhelmsson, S. & Lins, L. E. Heparin elimination and hemostasis in hemodialysis. Clin. Nephrol. 22, 303–306 (1984).

    CAS  PubMed  Google Scholar 

  9. Ouseph, R. & Ward, R. A. Anticoagulation for intermittent hemodialysis. Semin. Dial. 13, 181–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Ouseph, R., Brier, M. E. & Ward, R. A. Improved dialyzer reuse after use of a population pharmacodynamic model to determine heparin doses. Am. J. Kidney Dis. 35, 89–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Brunet, P. et al. Pharmacodynamics of unfractionated heparin during and after a hemodialysis session. Am. J. Kidney Dis. 51, 789–795 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Davenport, A. Anticoagulation options for intermittent haemodialysis. Minerva Urol. Nefrol. 58, 171–180 (2006).

    CAS  PubMed  Google Scholar 

  13. Shapiro, W. B., Faubert, P. F., Porush, J. G & Chou, S. Y. Low-dose heparin in routine hemodialysis monitored by activated partial thromboplastin time. Artif. Organs 3, 73–77 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. Ozen, S., Saatci, U., Bakkaloglu, A., Uyumaz, H. & Kavukçu, S. Tight heparin regimen for hemodialysis in children. Int. Urol. Nephrol. 25, 499–501 (1993).

    CAS  PubMed  Google Scholar 

  15. Kishimoto, T. K. et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N. Engl. J. Med. 358, 2457–2467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davenport, A. Antibodies to heparin-platelet factor 4 complex: pathogenesis, epidemiology, and management of heparin-induced thrombocytopenia in hemodialysis. Am. J. Kidney Dis. 54, 361–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Charif, R. & Davenport, A. Heparin-induced thrombocytopenia: An uncommon but serious complication of heparin use in renal replacement therapy. Hemodial. Int. 10, 235–240 (2006).

    Article  PubMed  Google Scholar 

  18. Mehta, R. L. Anticoagulation strategies for continuous renal replacement therapies: what works? Am. J. Kidney Dis. 28 (Suppl. 3), S8–S14 (1996).

    Article  Google Scholar 

  19. Kaplan, A. A. in Replacement of Renal Function by Dialysis 4th edn (eds Jacobs, C., Kjellstrand, C. M., Koch, K. M. & Winchester, J. F.) 390–417 (Kluwer Academic Press, Dordrecht, 1996).

    Book  Google Scholar 

  20. Shulman, R. I., Singer, M. & Rock, J. Continuous renal replacement. Keeping the circuit open: lessons from the lab. Blood Purif. 20, 275–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Langley, P. G. et al. Antithrombin III supplementation reduces heparin requirement and platelet loss during hemodialysis of patients with fulminant hepatic failure. Hepatology 14, 251–256 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Davenport, A. Low-molecular-weight heparin as an alternative anticoagulant to unfractionated heparin for routine outpatient haemodialysis treatments. Nephrology 14, 455–461 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Aggarwal, A. et al. Attenuation of platelet reactivity by enoxaparin compared with unfractionated heparin in patients undergoing haemodialysis. Nephrol. Dial. Transplant. 19, 1559–1563 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Gritters, M. et al. Platelet activation in clinical haemodialysis: LMWH as a major contributor to bio-incompatibility? Nephrol. Dial. Transplant. 23, 2911–2917 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Hofbauer, R. et al. Effect of anticoagulation on blood membrane interactions during hemodialysis. Kidney Int. 56, 1578–1583 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Sombolos, K. I. et al. The anticoagulant activity of enoxaparin sodium during on-line hemodiafiltration and conventional hemodialysis. Hemodial. Int. 13, 43–47 (2009).

    Article  PubMed  Google Scholar 

  27. Greaves, M. et al. Limitations of the laboratory monitoring of heparin therapy. Scientific and Standardization Committee Communications: on behalf of the Control of Anticoagulation Subcommittee of the Scientific and Standardization Committee of the International Society of Thrombosis and Haemostasis. Thromb. Haemost. 87, 163–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Brophy, D. F., Martin, E. J., Gehr, T. W. & Care, M. E. Jr. Enhanced anticoagulation activity of enoxaparin in patients with ESRD as measured by thrombin generation time. Am. J. Kidney Dis. 44, 270–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Saltissi, D., Morgan, C., Westhuyzen, J. & Healy, H. Comparison of low-molecular-weight heparin (enoxaparin sodium) and standard fractionated heparin for haemodialysis. Nephrol. Dial. Transplant. 14, 2698–2703 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Davenport, A. Low-molecular-weight heparin for routine hemodialysis. Hemodial. Int. 12 (Suppl. 2), S34–S37 (2008).

    Article  PubMed  Google Scholar 

  31. Davenport, A. Anticoagulation for continuous renal replacement therapy. Contrib. Nephrol. 144, 228–238 (2004).

    Article  PubMed  Google Scholar 

  32. Lavaud, S. et al. Assessment of the heparin-binding AN69 ST hemodialysis membrane: II. Clinical studies without heparin administration. ASAIO J. 51, 348–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Evenepoel, P. et al. Heparin-coated polyacrylonitrile membrane versus regional citrate anticoagulation: a prospective randomized study of 2 anticoagulation strategies in patients at risk of bleeding. Am. J. Kidney Dis. 49, 642–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chanard, J. et al. The clinical evaluation of low-dose heparin in haemodialysis: a prospective study using the heparin-coated AN69 ST membrane. Nephrol. Dial. Transplant. 23, 2003–2009 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Frank, R. D., Müller, U., Lanzmich, R., Groeger, C. & Floege, J. Anticoagulant-free Genius haemodialysis using low molecular weight heparin-coated circuits. Nephrol. Dial. Transplant. 21, 1013–1018 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ryan, K. E. et al. Antithrombotic properties of dermatan sulphate (MF 701) in haemodialysis for chronic renal failure. Thromb. Haemost. 10, 563–569 (1992).

    Google Scholar 

  37. Krauel, K. et al. Heparin-induced thrombocytopenia—therapeutic concentrations of danaparoid, unlike fondaprinux and direct thrombin inhibitors inhibit formation of platelet factor 4–heparin complexes. J. Thromb. Haemost. 6, 2160–2167 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Keeling, D., Davidson, S. & Watson, H. The management of heparin-induced thrombocytopenia. Br. J. Haematol. 133, 259–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Davenport, A. What are the reasonable options for anticoagulation needs (HD and Catheter lock) in a dialysis for patients with heparin induced thrombocytopenia? Semin. Dial. (in press).

  40. Neuhaus, T. J., Goetschel, P. & Schmugge, M. Heparin-induced thrombocytopenia type II on hemodialysis: switch to danaparoid. Pediatr. Nephrol. 14, 713–716 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Young, G. et al. Recombinant activated factor VII effectively reverses the anticoagulant effects of heparin, enoxaparin, fondaparinux, argatroban, and bivalirudin ex vivo as measured using thromboelastography. Blood Coagul. Fibrinolysis 18, 547–553 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Sombolos, K. I. et al. Use of fondaparinux as an anticoagulant during hemodialysis: a preliminary study. Int. J. Clin. Pharmacol. Ther. 46, 198–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Athar, U., Husain, J., Hudson, J., Lynch, J. & Gajra, A. Prolonged half-life of argatroban in patients with renal dysfunction and antiphospholipid antibody syndrome being treated for heparin-induced thrombocytopenia. Am. J. Hematol. 83, 245–246 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Warkentin, T. E. & Greinacher, A. (Eds) Heparin Induced Thrombocytopenia 3rd edn (Marcel Dekker Inc., New York, 2004).

    Book  Google Scholar 

  45. Murray, P. T. et al. A prospective comparison of three argatroban treatment regimens during hemodialysis in end-stage renal disease. Kidney Int. 66, 2446–2453 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Greinacher, A. & Warkentin, T. E. The direct thrombin inhibitor hirudin. Thromb. Haemost. 99, 819–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Benz, K., Nauck, M. A., Böhler, J. & Fischer, K. G. Hemofiltration of recombinant hirudin by different hemodialyzer membranes: implications for clinical use. Clin. J. Am. Soc. Nephrol. 2, 470–476 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Eichler, P., Friesen, H. J., Lubennow, N., Jaeger, B. & Greinacre, A. Antihirudin antibodies in patients with heparin induced thrombocytopenia treated with lepirudin: incidence, effects on aPTT, and clinical relevance. Blood 96, 2373–2378 (2000).

    CAS  PubMed  Google Scholar 

  49. Fischer, K. G. Essentials of anticoagulation in hemodialysis. Hemodial. Int. 11, 178–189 (2007).

    Article  PubMed  Google Scholar 

  50. Bircher, A. J., Harr, T., Hohenstein, L. & Tsakiris, D. A. Hypersensitivity reactions to anticoagulant drugs: diagnosis and management options. Allergy 61, 1432–1440 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Akizawa, T. Beneficial characteristics of protease inhibitor as an anticoagulant for extracorporeal circulation [Japanese]. Rinsho Ketsueki 31, 782–786 (1990).

    CAS  PubMed  Google Scholar 

  52. Shinoda, T. Anticoagulation in acute blood purification for acute renal failure in critical care. Contrib. Nephrol. 166, 119–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Matsuo, T., Matsuo, M. & Ouga-Maruyama, S. Can nafamostat mesilate be used for temporary management of hemodialysis in a patient with heparin-induced thrombocytopenia (HIT)? Thromb. Haemost. 86, 1115–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, J. W. et al. Superior outcome of nafamostat mesilate as an anticoagulant in patients undergoing maintenance hemodialysis with intracerebral hemorrhage. Ren. Fail. 31, 668–675 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Pinnick, R. V., Wiegmann, T. B. & Diederich, D. A. Regional citrate anticoagulation for hemodialysis in the patient at high risk for bleeding. N. Engl. J. Med. 3, 258–261 (1983).

    Article  Google Scholar 

  56. Böhler, J., Schollmeyer, P., Dressel, B., Dobos, G. & Hörl, W. H. Reduction of granulocyte activation during hemodialysis with regional citrate anticoagulation: dissociation of complement activation and neutropenia from neutrophil degranulation. J. Am. Soc. Nephrol. 7, 234–241 (1996).

    PubMed  Google Scholar 

  57. Bos, J. C. et al. Low polymorphonuclear cell degranulation during citrate anticoagulation: a comparison between citrate and heparin dialysis. Nephrol. Dial. Transplant. 12, 1387–1393 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Dhondt, A. et al. Citrate anticoagulation does not correct cuprophane bioincompatibility as evaluated by the expression of leukocyte surface molecules. Nephrol. Dial. Transplant. 13, 1752–1758 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Dhondt, A. et al. Effect of regional citrate anticoagulation on leukopenia, complement activation, and expression of leukocyte surface molecules during hemodialysis with unmodified cellulose membranes. Nephron 85, 334–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Kreuzer, M. et al. Regional citrate anticoagulation is safe in intermittent high-flux haemodialysis treatment of children and adolescents with an increased risk of bleeding. Nephrol. Dial. Transplant. 25, 3337–3342 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Wright, S., Steinwandel, U. & Ferrari, P. Citrate anticoagulation during long-term haemodialysis. Nephrology (Carlton) 16, 396–402 (2011).

    Article  Google Scholar 

  62. Apsner, R. et al. Simplified citrate anticoagulation for high-flux hemodialysis. Am. J. Kidney Dis. 38, 979–987 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Evenepoel, P. et al. Regional citrate anticoagulation for hemodialysis using a conventional calcium-containing dialysate. Am. J. Kidney Dis. 39, 315–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Ahmad, S., Callan, R., Cole, J. J. & Blagg, C. R. Dialysate made from dry chemicals using citric acid increases dialysis dose. Am. J. Kidney Dis. 35, 493–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Kossman, R. J., Gonzales, A., Callan, R. & Ahmad, S. Increased efficiency of hemodialysis with citrate dialysate: a prospective controlled study. Clin. J. Am. Soc. Nephrol. 4, 1459–1464 (2009).

    Article  Google Scholar 

  66. Hanevold, C., Lu, S. & Yonekawa, K. Utility of citrate dialysate in management of acute kidney injury in children. Hemodial. Int. 14 (Suppl. 1), S2–S6 (2010).

    Article  PubMed  Google Scholar 

  67. Thijssen, S. et al. A mathematical model of regional citrate anticoagulation in hemodialysis. Blood Purif. 29, 197–203 (2010).

    Article  PubMed  Google Scholar 

  68. Finkel, K. W. & Foringer, J. R. Safety of regional citrate anticoagulation for continuous sustained low efficiency dialysis (C-SLED) in critically ill patients. Ren. Fail. 27, 541–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Kutsogiannis, D. J., Mayers, I., Chin, W. D. & Gibney, R. T. Regional citrate anticoagulation in continuous venovenous hemodiafiltration. Am. J. Kidney Dis. 35, 802–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Davenport, A. & Tolwani, A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. Nephrol. Dial. Transplant. Plus 2, 439–447 (2009).

    CAS  Google Scholar 

  71. Janssen, M. J. et al. Citrate compared to low molecular weight heparin anticoagulation in chronic hemodialysis patients. Kidney Int. 49, 806–813 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Suki, W. N. et al. Citrate for regional anticoagulation. Effects on blood PO2, ammonia, and aluminum. ASAIO Trans. 34, 524–527 (1988).

    CAS  PubMed  Google Scholar 

  73. De Vos, J. & Hombrouckx, R. Citrate anticoagulation and adverse events. EDTNA ERCA J. 29, 112–113 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Kelleher, S. P. & Schulman, G. Severe metabolic alkalosis complicating regional citrate hemodialysis. Am. J. Kidney Dis. 9, 235–236 (1987).

    Article  CAS  PubMed  Google Scholar 

  75. Davenport, A. The management of heparin induced thrombocytopenia during renal replacement therapy. Hemodial Int. 3, 81–85 (2001).

    Article  Google Scholar 

  76. Fiaccadori, E. et al. Sustained low-efficiency dialysis (SLED) with prostacyclin in critically ill patients with acute renal failure. Nephrol. Dial. Transplant. 22, 529–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Davenport, A. & Mehta, S. The acute Dialysis Quality Initiative—part VI: access and anticoagulation in CRRT. Adv. Ren. Replace. Ther. 9, 273–281 (2002).

    Article  PubMed  Google Scholar 

  78. Davenport, A., Will, E. J. & Davison, A. M. Comparison of the use of standard heparin and prostacyclin anticoagulation in spontaneous and pump-driven extracorporeal circuits in patients with combined acute renal and hepatic failure. Nephron 66, 431–437 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Davenport, A. Anticoagulation options for patients with heparin-induced thrombocytopenia requiring renal support in the intensive care unit. Contrib. Nephrol. 156, 259–266 (2007).

    Article  PubMed  Google Scholar 

  80. Zobel, G., Ring, E. & Rödl, S. Prognosis in pediatric patients with multiple organ system failure and continuous extracorporeal renal support. Contrib. Nephrol. 116, 163–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Caruana, R. J. et al. Controlled study of heparin versus epoprostenol sodium (prostacyclin) as the sole anticoagulant for chronic hemodialysis. Blood Purif. 9, 296–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Davenport, A. Anticoagulation in patients with acute renal failure treated with continuous renal replacement therapies. Hemodial. Int. 2, 41–60 (1998).

    Article  Google Scholar 

  83. Zusman, R. M. et al. Hemodialysis using prostacyclin instead of heparin as the sole antithrombotic agent. N. Engl. J. Med. 304, 934–939 (1981).

    Article  CAS  PubMed  Google Scholar 

  84. Langenecker, S. A. et al. Anticoagulation with prostacyclin and heparin during continuous venovenous hemofiltration. Crit. Care Med. 22, 1774–1781 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. Webb, A. R., Mythen, M. G., Jacobson, D. & Mackie, I. J. Maintaining blood flow in the extracorporeal circuit: haemostasis and anticoagulation. Intensive Care Med. 21, 84–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Davenport, A. Heparin-induced thrombocytopenia during renal replacement therapy. Hemodial. Int. 8, 295–303 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davenport, A. What are the anticoagulation options for intermittent hemodialysis?. Nat Rev Nephrol 7, 499–508 (2011). https://doi.org/10.1038/nrneph.2011.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing