Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Encapsulating peritoneal sclerosis: the state of affairs

Abstract

Encapsulating peritoneal sclerosis (EPS) is a severe complication of long-term peritoneal dialysis (PD) with a 50% mortality rate. EPS is characterized by progressive and excessive fibrotic thickening of the peritoneum, leading to encapsulation of the bowels and intestinal obstruction. At present, EPS cannot be detected with certainty during its early stages; however, a progressive loss of ultrafiltration capacity often precedes its development. Studies that attempted to elucidate the pathogenesis of EPS have shown that the duration of exposure to PD fluids is the most important risk factor for EPS, and that young age and possibly the effects of peritonitis are additional contributory factors. The pathophysiology of EPS is probably best described as a multiple-hit process with a central role for transforming growth factor β. A form of EPS that develops shortly after kidney transplantation has also been recognized as a distinct clinical entity, and may be a common form of EPS in countries with a high transplantation rate. Criteria have been developed to identify EPS by abdominal CT scan at the symptomatic stage, but further clinical research is needed to identify early EPS in asymptomatic patients, to clarify additional risk factors for EPS and to define optimal treatment strategies.

Key Points

  • Encapsulating peritoneal sclerosis (EPS) is a devastating syndrome of excessive fibrotic peritoneal thickening that can eventually encapsulate the bowel, leading to partial or total bowel obstruction

  • EPS occurs in 0.5–2.5% of patients on peritoneal dialysis (PD); in the majority of patients, EPS develops after PD treatment has stopped

  • The cumulative duration of exposure to PD fluids is the dominant risk factor for EPS, but young age and kidney transplantation might also be risk factors

  • The pathophysiology of EPS is probably best described as a multiple-hit process, in which expression of transforming growth factor β has a central role

  • No definitive criteria enable detection of the early stages of EPS, but patients with progressively declining ultrafiltration capacity are at risk of this condition and should be considered for hemodialysis

  • Treatment of EPS consists of maintaining good nutritional status, with corticosteroids and/or tamoxifen; surgery might be an alternative option if performed by a surgeon experienced in EPS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Risk factors associated with EPS.

Similar content being viewed by others

References

  1. Kawaguchi, Y., Kawanishi, H., Mujais, S., Topley, N. & Oreopoulos, D. G. Encapsulating peritoneal sclerosis: definition, etiology, diagnosis, and treatment. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit. Dial. Int. 20 (Suppl. 4), S43–S55 (2000).

    PubMed  Google Scholar 

  2. Brown, M. C., Simpson, K., Kerssens, J. J. & Mactier, R. A. Encapsulating peritoneal sclerosis in the new millennium: a national cohort study. Clin. J. Am. Soc. Nephrol. 4, 1222–1229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kawanishi, H. Encapsulating peritoneal sclerosis in Japan: prospective multicenter controlled study. Perit. Dial. Int. 21 (Suppl. 3), S67–S71 (2001).

    PubMed  Google Scholar 

  4. Rigby, R. J. & Hawley, C. M. Sclerosing peritonitis: the experience in Australia. Nephrol. Dial. Transplant. 13, 154–159 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Kawanishi, H. et al. Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study. Am. J. Kidney Dis. 44, 729–737 (2004).

    Article  PubMed  Google Scholar 

  6. Nomoto, Y. et al. Sclerosing encapsulating peritonitis in patients undergoing continuous ambulatory peritoneal dialysis: a report of the Japanese Sclerosing Encapsulating Peritonitis Study Group. Am. J. Kidney Dis. 28, 420–427 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Summers, A. M. et al. Single-center experience of encapsulating peritoneal sclerosis in patients on peritoneal dialysis for end-stage renal failure. Kidney Int. 68, 2381–2388 (2005).

    Article  PubMed  Google Scholar 

  8. Balasubramaniam, G. et al. The Pan-Thames EPS study: treatment and outcomes of encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 24, 3209–3215 (2009).

    Article  PubMed  Google Scholar 

  9. Johnson, D. W. et al. Encapsulating peritoneal sclerosis: incidence, predictors, and outcomes. Kidney Int. 77, 904–912 (2010).

    Article  PubMed  Google Scholar 

  10. Korte, M. R., Boeschoten, E. W. & Betjes, M. G. The Dutch EPS Registry: increasing the knowledge of encapsulating peritoneal sclerosis. Neth. J. Med. 67, 359–362 (2009).

    CAS  PubMed  Google Scholar 

  11. Summers, A. M. & Brenchley, P. E. An international encapsulating peritoneal sclerosis registry and DNA bank: why we need one now. Perit. Dial. Int. 26, 559–563 (2006).

    PubMed  Google Scholar 

  12. Afthentopoulos, I. E., Passadakis, P., Oreopoulos, D. G. & Bargman, J. Sclerosing peritonitis in continuous ambulatory peritoneal dialysis patients: one center's experience and review of the literature. Adv. Ren. Replace. Ther. 5, 157–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Korte, M. R. et al. Increasing incidence of severe encapsulating peritoneal sclerosis after kidney transplantation. Nephrol. Dial. Transplant. 22, 2412–2414 (2007).

    Article  PubMed  Google Scholar 

  14. Garosi, G. & Oreopoulos, D. G. No need for an “expiry date” in chronic peritoneal dialysis to prevent encapsulating peritoneal sclerosis. Int. Urol. Nephrol. 41, 903–907 (2009).

    Article  PubMed  Google Scholar 

  15. Flessner, M. F. The transport barrier in intraperitoneal therapy. Am. J. Physiol. Renal Physiol. 288, F433–F442 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Williams, J. D., Craig, K. J., Topley, N. & Williams, G. T. Peritoneal dialysis: changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney Int. Suppl. 84, S158–S161 (2003).

    Article  Google Scholar 

  17. Mateijsen, M. A. et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit. Dial. Int. 19, 517–525 (1999).

    CAS  PubMed  Google Scholar 

  18. Williams, J. D., Craig, K. J., von Ruhland, C., Topley, N. & Williams, G. T. The natural course of peritoneal membrane biology during peritoneal dialysis. Kidney Int. Suppl. 88, S43–S49 (2003).

    Article  Google Scholar 

  19. Honda, K., Nitta, K., Horita, S., Yumura, W. & Nihei, H. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 72, 171–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Plum, J. et al. Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int. Suppl. 78, S42–S47 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama, M. et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 51, 182–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Yamada, K. et al. Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin. Nephrol. 42, 354–361 (1994).

    CAS  PubMed  Google Scholar 

  23. Honda, K. et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol. Dial. Transplant. 14, 1541–1549 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, Y. S. et al. Advanced glycosylation end products stimulate collagen mRNA synthesis in mesangial cells mediated by protein kinase C and transforming growth factor-β. J. Lab. Clin. Med. 138, 59–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Schwenger, V. et al. Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J. Am. Soc. Nephrol. 17, 199–207 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. De Vriese, A. S., Flyvbjerg, A., Mortier, S., Tilton, R. G. & Lameire, N. H. Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J. Am. Soc. Nephrol. 14, 2109–2118 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Twardowski, Z. J. et al. Peritoneal equilibration test. Perit. Dial. Bull. 7, 138–147 (1987).

    Google Scholar 

  28. Park, M. S., Lee, H. A., Chu, W. S., Yang, D. H. & Hwang, S. D. Peritoneal accumulation of AGE and peritoneal membrane permeability. Perit. Dial. Int. 20, 452–460 (2000).

    CAS  PubMed  Google Scholar 

  29. Smit, W., Parikova, A., Struijk, D. G. & Krediet, R. T. The difference in causes of early and late ultrafiltration failure in peritoneal dialysis. Perit. Dial. Int. 25 (Suppl. 3), S41–S45 (2005).

    PubMed  Google Scholar 

  30. Garosi, G. Different aspects of peritoneal damage: fibrosis and sclerosis. Contrib. Nephrol. 163, 45–53 (2009).

    Article  PubMed  Google Scholar 

  31. Honda, K. et al. Histologic criteria for diagnosing encapsulating peritoneal sclerosis in continuous ambulatory peritoneal dialysis patients. Adv. Perit. Dial. 19, 169–175 (2003).

    PubMed  Google Scholar 

  32. Garosi, G., Di Paolo, N., Sacchi, G. & Gaggiotti, E. Sclerosing peritonitis: a nosological entity. Perit. Dial. Int. 25 (Suppl. 3), S110–S112 (2005).

    PubMed  Google Scholar 

  33. Sherif, A. M. et al. Comparison between the pathology of encapsulating sclerosis and simple sclerosis of the peritoneal membrane in chronic peritoneal dialysis. Ther. Apher. Dial. 12, 33–41 (2008).

    Article  PubMed  Google Scholar 

  34. Verger, C. & Celicout, B. Peritoneal permeability and encapsulating peritonitis. Lancet 1, 986–987 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Krediet, R. T. et al. The time course of peritoneal transport kinetics in continuous ambulatory peritoneal dialysis patients who develop sclerosing peritonitis. Am. J. Kidney Dis. 13, 299–307 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Mactier, R. A. The spectrum of peritoneal fibrosing syndromes in peritoneal dialysis. Adv. Perit. Dial. 16, 223–228 (2000).

    CAS  PubMed  Google Scholar 

  37. Paniagua, R. et al. Correlation between peritoneal equilibration test and dialysis adequacy and transport test, for peritoneal transport type characterization. Perit. Dial. Int. 20, 53–59 (2000).

    CAS  PubMed  Google Scholar 

  38. Lambie, M. L., John, B., Mushahar, L., Huckvale, C. & Davies, S. J. The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int. 78, 611–618 (2010).

    Article  PubMed  Google Scholar 

  39. Sampimon, D. E., Coester, A. M., Struijk, D. G. & Krediet, R. T. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 26, 291–298 (2010).

    Article  PubMed  Google Scholar 

  40. Sampimon, D. E., Coester, A. M., Struijk, D. G. & Krediet, R. T. Time course of peritoneal transport parameters in peritoneal dialysis patients who develop peritoneal sclerosis. Adv. Perit. Dial. 23, 107–111 (2007).

    PubMed  Google Scholar 

  41. Brown, E. A. et al. Length of time on peritoneal dialysis and encapsulating peritoneal sclerosis: position paper for ISPD. Perit. Dial. Int. 29, 595–600 (2009).

    PubMed  Google Scholar 

  42. Connolly, D. T. et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Invest. 84, 1470–1478 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ha, H., Cha, M. K., Choi, H. N. & Lee, H. B. Effects of peritoneal dialysis solutions on the secretion of growth factors and extracellular matrix proteins by human peritoneal mesothelial cells. Perit. Dial. Int. 22, 171–177 (2002).

    CAS  PubMed  Google Scholar 

  44. Mandl-Weber, S., Cohen, C. D., Haslinger, B., Kretzler, M. & Sitter, T. Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells. Kidney Int. 61, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Io, H. et al. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int. 65, 1927–1936 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Yoshio, Y. et al. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. Kidney Int. 66, 1677–1685 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Tanabe, K. et al. Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int. 71, 227–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Zweers, M. M., de Waart, D. R., Smit, W., Struijk, D. G. & Krediet, R. T. Growth factors VEGF and TGF-β1 in peritoneal dialysis. J. Lab. Clin. Med. 134, 124–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Zweers, M. M., Struijk, D. G., Smit, W. & Krediet, R. T. Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up. J. Lab. Clin. Med. 137, 125–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Patel, P. et al. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury. Kidney Int. 77, 319–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Bonniaud, P. et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J. Immunol. 173, 2099–2108 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Sato, M., Muragaki, Y., Saika, S., Roberts, A. B. & Ooshima, A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 112, 1486–1494 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Border, W. A. & Noble, N. A. Transforming growth factor β in tissue fibrosis. N. Engl. J. Med. 331, 1286–1292 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Rougier, J. P., Guia, S., Hagege, J., Nguyen, G. & Ronco, P. M. PAI-1 secretion and matrix deposition in human peritoneal mesothelial cell cultures: transcriptional regulation by TGF-β1. Kidney Int. 54, 87–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Martin, J., Yung, S., Robson, R. L., Steadman, R. & Davies, M. Production and regulation of matrix metalloproteinases and their inhibitors by human peritoneal mesothelial cells. Perit. Dial. Int. 20, 524–533 (2000).

    CAS  PubMed  Google Scholar 

  56. Hung., K. Y., Huang, J. W., Chen, C. T., Lee, P. H. & Tsai, T. J. Pentoxifylline modulates intracellular signalling of TGF-β in cultured human peritoneal mesothelial cells: implications for prevention of encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 18, 670–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hung, K. Y. et al. Dipyridamole inhibits TGF-β-induced collagen gene expression in human peritoneal mesothelial cells. Kidney Int. 60, 1249–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, L. et al. Prolonged peritoneal gene expression using a helper-dependent adenovirus. Perit. Dial. Int. 29, 508–516 (2009).

    PubMed  Google Scholar 

  59. Margetts, P. J. et al. Transient overexpression of TGF-β1 induces epithelial mesenchymal transition in the rodent peritoneum. J. Am. Soc. Nephrol. 16, 425–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Margetts, P. J. et al. Gene transfer of transforming growth factor-β1 to the rat peritoneum: effects on membrane function. J. Am. Soc. Nephrol. 12, 2029–2039 (2001).

    CAS  PubMed  Google Scholar 

  61. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Jimenez-Heffernan, J. A. et al. Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis. Virchows Arch. 444, 247–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Yanez-Mo, M. et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348, 403–413 (2003).

    Article  PubMed  Google Scholar 

  64. Yang, A. H., Chen, J. Y. & Lin, J. K. Myofibroblastic conversion of mesothelial cells. Kidney Int. 63, 1530–1539 (2003).

    Article  PubMed  Google Scholar 

  65. Selgas, R. et al. Epithelial-to-mesenchymal transition of the mesothelial cell--its role in the response of the peritoneum to dialysis. Nephrol. Dial. Transplant. 21 (Suppl. 2), ii2–ii7 (2006).

    Article  CAS  Google Scholar 

  66. Shirai, K. et al. A new model of anterior subcapsular cataract: involvement of TGFβ/Smad signaling. Mol. Vis. 12, 681–691 (2006).

    CAS  PubMed  Google Scholar 

  67. Banh, A. et al. Lens-specific expression of TGF-β induces anterior subcapsular cataract formation in the absence of Smad3. Invest. Ophthalmol. Vis. Sci. 47, 3450–3460 (2006).

    Article  PubMed  Google Scholar 

  68. Aroeira, L. S. et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am. J. Kidney Dis. 46, 938–948 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Hirahara, I. et al. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis--a multicentre study in Japan. Nephrol. Dial. Transplant. 22, 560–567 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. De Vriese, A. S., Tilton, R. G., Mortier, S. & Lameire, N. H. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol. Dial. Transplant. 21, 2549–2555 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Del Peso, G. et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int. Suppl. 108, S26–S33 (2008).

    Article  CAS  Google Scholar 

  73. Kawanishi, H., Watanabe, H., Moriishi, M. & Tsuchiya, S. Successful surgical management of encapsulating peritoneal sclerosis. Perit. Dial. Int. 25 (Suppl. 4), S39–S47 (2005).

    PubMed  Google Scholar 

  74. Honda, K. & Oda, H. Pathology of encapsulating peritoneal sclerosis. Perit. Dial. Int. 25 (Suppl. 4), S19–S29 (2005).

    PubMed  Google Scholar 

  75. Augustine, T., Brown, P. W., Davies, S. D., Summers, A. M. & Wilkie, M. E. Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin. Pract. 111, c149–c154 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Summers, A. M., Hoff, C. M. & Topley, N. How can genetic advances impact on experimental models of encapsulating peritoneal sclerosis? Perit. Dial. Int. 28 (Suppl. 5), S16–S20 (2008).

    CAS  PubMed  Google Scholar 

  77. Watson, C. J., Webb, N. J., Bottomley, M. J. & Brenchley, P. E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12, 1232–1235 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Sampimon, D. E., Vlijm, A., Phoa, S. S., Krediet, R. T. & Struijk, D. G. Encapsulating peritoneal sclerosis in a peritoneal dialysis patient using biocompatible fluids only: is Alport syndrome a risk factor? Perit. Dial. Int. 30, 240–242 (2010).

    Article  PubMed  Google Scholar 

  79. Williams, J. D. et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13, 470–479 (2002).

    PubMed  Google Scholar 

  80. Korte, M. R. et al. Risk factors associated with encapsulating peritoneal sclerosis in Dutch EPS study. Perit. Dial. Int. 31, 269–278 (2011).

    Article  PubMed  Google Scholar 

  81. Habib, A. M., Preston, E. & Davenport, A. Risk factors for developing encapsulating peritoneal sclerosis in the icodextrin era of peritoneal dialysis prescription. Nephrol. Dial. Transplant. 25, 1633–1638 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Nakayama, M. et al. Risk factors and preventive measures for encapsulating peritoneal sclerosis—Jikei experience. Adv. Perit. Dial. 18, 144–148 (2002).

    PubMed  Google Scholar 

  83. Moriishi, M. et al. Preservation of peritoneal catheter for prevention of encapsulating peritoneal sclerosis. Adv. Perit. Dial. 18, 149–153 (2002).

    PubMed  Google Scholar 

  84. Yamamoto, T., Nagasue, K., Okuno, S. & Yamakawa, T. The role of peritoneal lavage and the prognostic significance of mesothelial cell area in preventing encapsulating peritoneal sclerosis. Perit. Dial. Int. 30, 343–352 (2010).

    Article  PubMed  Google Scholar 

  85. Linden, T., Forsback, G., Deppisch, R., Henle, T. & Wieslander, A. 3-Deoxyglucosone, a promoter of advanced glycation end products in fluids for peritoneal dialysis. Perit. Dial. Int. 18, 290–293 (1998).

    CAS  PubMed  Google Scholar 

  86. Hendriks, P. M. et al. Peritoneal sclerosis in chronic peritoneal dialysis patients: analysis of clinical presentation, risk factors, and peritoneal transport kinetics. Perit. Dial. Int. 17, 136–143 (1997).

    CAS  PubMed  Google Scholar 

  87. Boulanger, E. Peritoneal and systemic inflammation: the benefits of using biocompatible peritoneal dialysis fluids. Perit. Dial. Int. 28, 28–31 (2008).

    PubMed  Google Scholar 

  88. Hekking, L. H. et al. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J. Am. Soc. Nephrol. 12, 2775–2786 (2001).

    CAS  PubMed  Google Scholar 

  89. Rippe, B. et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 59, 348–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Williams, J. D. et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66, 408–418 (2004).

    Article  PubMed  Google Scholar 

  91. Dombros, N. et al. European best practice guidelines for peritoneal dialysis. 5 Peritoneal dialysis solutions. Nephrol. Dial. Transplant. 20 (Suppl. 9), ix16–ix20 (2005).

    PubMed  Google Scholar 

  92. Mistry, C. D., Mallick, N. P. & Gokal, R. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet 2, 178–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Goodship, T. H. et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin. Sci. (Lond.) 73, 471–478 (1987).

    Article  CAS  Google Scholar 

  94. Martis, L. et al. Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet 365, 588–594 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Martikainen, T. A., Teppo, A. M., Gronhagen-Riska, C. & Ekstrand, A. V. Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit. Dial. Int. 25, 453–460 (2005).

    CAS  PubMed  Google Scholar 

  96. Posthuma, N. et al. Peritoneal kinetics and mesothelial markers in CCPD using icodextrin for daytime dwell for two years. Perit. Dial. Int. 20, 174–180 (2000).

    CAS  PubMed  Google Scholar 

  97. Moriishi, M. & Kawanishi, H. Fibrin degradation products are a useful marker for the risk of encapsulating peritoneal sclerosis. Adv. Perit. Dial. 24, 56–59 (2008).

    PubMed  Google Scholar 

  98. Moriishi, M., Kawanishi, H. & Tsuchiya, S. Impact on peritoneal membrane of use of icodextrin-based dialysis solution in peritoneal dialysis patients. Adv. Perit. Dial. 22, 24–28 (2006).

    CAS  PubMed  Google Scholar 

  99. Parikova, A., Zweers, M. M., Struijk, D. G. & Krediet, R. T. Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions. Adv. Perit. Dial. 19, 186–190 (2003).

    PubMed  Google Scholar 

  100. Davies, S. J. et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J. Am. Soc. Nephrol. 14, 2338–2344 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Bradley, J. A. et al. Sclerosing obstructive peritonitis after continuous ambulatory peritoneal dialysis. Lancet 2, 113–114 (1983).

    Article  CAS  PubMed  Google Scholar 

  102. Yamamoto, R. et al. Risk factors for encapsulating peritoneal sclerosis in patients who have experienced peritoneal dialysis treatment. Clin. Exp. Nephrol. 9, 148–152 (2005).

    Article  PubMed  Google Scholar 

  103. Flanigan, M., Anderson, D. & Freeman, R. M. Peritoneal dialysis complicated by fungal peritonitis and peritoneal fibrosis. Am. J. Med. 76, A113–A125 (1984).

    Article  CAS  PubMed  Google Scholar 

  104. Chew, C. G., Clarkson, A. R. & Faull, R. J. Relapsing CAPD peritonitis with rapid peritoneal sclerosis due to Haemophilus influenzae. Nephrol. Dial. Transplant. 12, 821–822 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Kim, B. S. et al. Clinical characteristics of dialysis related sclerosing encapsulating peritonitis: multi-center experience in Korea. Yonsei Med. J. 46, 104–111 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fieren, M. W., Betjes, M. G., Korte, M. R. & Boer, W. H. Posttransplant encapsulating peritoneal sclerosis: a worrying new trend? Perit. Dial. Int. 27, 619–624 (2007).

    PubMed  Google Scholar 

  107. Kuriyama, S. & Tomonari, H. Corticosteroid therapy in encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 16, 1304–1305 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Maluccio, M. et al. Tacrolimus enhances transforming growth factor-β1 expression and promotes tumor progression. Transplantation 76, 597–602 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Roberts, A. B. et al. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl Acad. Sci. USA 83, 4167–4171 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van Westrhenen, R. et al. Cyclosporin A induces peritoneal fibrosis and angiogenesis during chronic peritoneal exposure to a glucose-based, lactate-buffered dialysis solution in the rat. Blood Purif. 25, 466–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Lin, C. H. et al. Sclerosing encapsulating peritonitis in a liver transplant patient: a case report. World J. Gastroenterol. 11, 5412–5413 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Oules, R., Challah, S. & Brunner, F. P. Case-control study to determine the cause of sclerosing peritoneal disease. Nephrol. Dial. Transplant. 3, 66–69 (1988).

    CAS  PubMed  Google Scholar 

  113. Brown, P., Baddeley, H., Read, A. E., Davies, J. D. & McGarry, J. Sclerosing peritonitis, an unusual reaction to a β-adrenergic-blocking drug (practolol). Lancet 2, 1477–1481 (1974).

    Article  CAS  PubMed  Google Scholar 

  114. Holland, P. Sclerosing encapsulating peritonitis in chronic ambulatory peritoneal dialysis. Clin. Radiol. 41, 19–23 (1990).

    Article  CAS  PubMed  Google Scholar 

  115. Krestin, G. P., Kacl, G., Hoffmann, R., Keusch, G. & Burger, H. R. [The imaging diagnosis of sclerosing peritonitis (SP) following continuous ambulatory peritoneal dialysis (CAPD)]. Rofo 157, 506–511 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Campbell, S. et al. Sclerosing peritonitis: identification of diagnostic, clinical, and radiological features. Am. J. Kidney Dis. 24, 819–825 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Goodlad, C. et al. Screening for encapsulating peritoneal sclerosis in patients on peritoneal dialysis: role of CT scanning. Nephrol. Dial. Transplant. 26, 1374–1379 (2010).

    Article  PubMed  Google Scholar 

  118. Stafford-Johnson, D. B., Wilson, T. E., Francis, I. R. & Swartz, R. CT appearance of sclerosing peritonitis in patients on chronic ambulatory peritoneal dialysis. J. Comput. Assist. Tomogr. 22, 295–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Vlijm, A. et al. Computed tomographic findings characteristic for encapsulating peritoneal sclerosis: a case-control study. Perit. Dial. Int. 29, 517–522 (2009).

    PubMed  Google Scholar 

  120. Tarzi, R. M. et al. Assessing the validity of an abdominal CT scoring system in the diagnosis of encapsulating peritoneal sclerosis. Clin. J. Am. Soc. Nephrol. 3, 1702–1710 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Lien, Y. C. et al. Clinical images: encapsulating peritoneal sclerosis. CMAJ 181, 177 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Huser, N. et al. Sclerosing encapsulating peritonitis: MRI diagnosis. Eur. Radiol. 16, 238–239 (2006).

    Article  PubMed  Google Scholar 

  123. Nakamoto, H. Encapsulating peritoneal sclerosis—a clinician's approach to diagnosis and medical treatment. Perit. Dial. Int. 25 (Suppl. 4), S30–S38 (2005).

    PubMed  Google Scholar 

  124. Kawaguchi, Y. et al. Recommendations on the management of encapsulating peritoneal sclerosis in Japan, 2005: diagnosis, predictive markers, treatment, and preventive measures. Perit. Dial. Int. 25 (Suppl. 4), S83–S95 (2005).

    PubMed  Google Scholar 

  125. Breborowicz, A., Breborowicz, M., Pyda, M., Polubinska, A. & Oreopoulos, D. Limitations of CA125 as an index of peritoneal mesothelial cell mass. Nephron Clin. Pract. 100, c46–c51 (2005).

    Article  PubMed  Google Scholar 

  126. Pannekeet, M. M., Koomen, G. C., Struijk, D. G. & Krediet, R. T. Dialysate CA125 in stable CAPD patients: no relation with transport parameters. Clin. Nephrol. 44, 248–254 (1995).

    CAS  PubMed  Google Scholar 

  127. Do, J. Y. et al. The association between the vascular endothelial growth factor-to-cancer antigen 125 ratio in peritoneal dialysis effluent and the epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 28 (Suppl. 3), S101–S106 (2008).

    PubMed  Google Scholar 

  128. Sampimon, D. E. et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit. Dial. Int. 30, 163–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Vlijm, A., de Waart, D. R., Zweers, M. M. & Krediet, R. T. Effluent hydroxyproline in experimental peritoneal dialysis. Perit. Dial. Int. 27, 210–213 (2007).

    CAS  PubMed  Google Scholar 

  130. Cho, J. H. et al. Impact of systemic and local peritoneal inflammation on peritoneal solute transport rate in new peritoneal dialysis patients: a 1-year prospective study. Nephrol. Dial. Transplant. 25, 1964–1973 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Szeto, C. C. et al. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis. Am. J. Kidney Dis. 36, 609–614 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. de Freitas, D. et al. Nutritional management of patients undergoing surgery following diagnosis with encapsulating peritoneal sclerosis. Perit. Dial. Int. 28, 271–276 (2008).

    PubMed  Google Scholar 

  133. Kawanishi, H., Moriishi, M. & Tsuchiya, S. Experience of 100 surgical cases of encapsulating peritoneal sclerosis: investigation of recurrent cases after surgery. Adv. Perit. Dial. 22, 60–64 (2006).

    PubMed  Google Scholar 

  134. Kawanishi, H., Moriishi, M., Ide, K. & Dohi, K. Recommendation of the surgical option for treatment of encapsulating peritoneal sclerosis. Perit. Dial. Int. 28 (Suppl. 3), S205–S210 (2008).

    PubMed  Google Scholar 

  135. Bhandari, S., Wilkinson, A. & Sellars, L. Sclerosing peritonitis: value of immunosuppression prior to surgery. Nephrol. Dial. Transplant. 9, 436–437 (1994).

    CAS  PubMed  Google Scholar 

  136. Wong, C. F., Beshir, S., Khalil, A., Pai, P. & Ahmad, R. Successful treatment of encapsulating peritoneal sclerosis with azathioprine and prednisolone. Perit. Dial. Int. 25, 285–287 (2005).

    PubMed  Google Scholar 

  137. Rajani, R., Smyth, J., Koffman, C. G., Abbs, I. & Goldsmith, D. J. Differential Effect of sirolimus vs prednisolone in the treatment of sclerosing encapsulating peritonitis. Nephrol. Dial. Transplant. 17, 2278–2280 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Lafrance, J. P. et al. Successful treatment of encapsulating peritoneal sclerosis with immunosuppressive therapy. Am. J. Kidney Dis. 51, e7–e10 (2008).

    Article  PubMed  Google Scholar 

  139. Junor, B. J. & McMillan, M. A. Immunosuppression in sclerosing peritonitis. Adv. Perit. Dial. 9, 187–189 (1993).

    CAS  PubMed  Google Scholar 

  140. Fagugli, R. M., Selvi, A., Quintaliani, G., Bianchi, M. & Buoncristiani, U. Immunosuppressive treatment for sclerosing peritonitis. Nephrol. Dial. Transplant. 14, 1343–1345 (1999).

    Article  CAS  PubMed  Google Scholar 

  141. van Bommel, E. F., Hendriksz, T. R., Huiskes, A. W. & Zeegers, A. G. Brief communication: tamoxifen therapy for nonmalignant retroperitoneal fibrosis. Ann. Intern. Med. 144, 101–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Allaria, P. M., Giangrande, A., Gandini, E. & Pisoni, I. B. Continuous ambulatory peritoneal dialysis and sclerosing encapsulating peritonitis: tamoxifen as a new therapeutic agent? J. Nephrol. 12, 395–397 (1999).

    CAS  PubMed  Google Scholar 

  143. Eltoum, M. A., Wright, S., Atchley, J. & Mason, J. C. Four consecutive cases of peritoneal dialysis-related encapsulating peritoneal sclerosis treated successfully with tamoxifen. Perit. Dial. Int. 26, 203–206 (2006).

    CAS  PubMed  Google Scholar 

  144. Korte, M. R. et al. Tamoxifen is associated with lower mortality of encapsulating peritoneal sclerosis: results of the Dutch Multicentre EPS Study. Nephrol. Dial Transplant. 26, 691–697 (2010).

    Article  PubMed  CAS  Google Scholar 

  145. Noh, H. et al. Angiotensin II mediates high glucose-induced TGF-β1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit. Dial. Int. 25, 38–47 (2005).

    CAS  PubMed  Google Scholar 

  146. Kyuden, Y., Ito, T., Masaki, T., Yorioka, N. & Kohno, N. Tgf-β1 induced by high glucose is controlled by angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker on cultured human peritoneal mesothelial cells. Perit. Dial. Int. 25, 483–491 (2005).

    CAS  PubMed  Google Scholar 

  147. Wolf, G. & Neilson, E. G. Angiotensin II as a renal growth factor. J. Am. Soc. Nephrol. 3, 1531–1540 (1993).

    CAS  PubMed  Google Scholar 

  148. Subeq, Y. M. et al. Valsartan decreases TGF-β1 production and protects against chlorhexidine digluconate-induced liver peritoneal fibrosis in rats. Cytokine 53, 223–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Bozkurt, D. et al. The effects of renin-angiotensin system inhibition on regression of encapsulating peritoneal sclerosis. Perit. Dial. Int. 28 (Suppl. 5), S38–S42 (2008).

    CAS  PubMed  Google Scholar 

  150. Kolesnyk, I. et al. Impact of ACE inhibitors and AII receptor blockers on peritoneal membrane transport characteristics in long-term peritoneal dialysis patients. Perit. Dial. Int. 27, 446–453 (2007).

    CAS  PubMed  Google Scholar 

  151. Sampimon, D. E. et al. Use of angiotensin II inhibitors in patients that develop encapsulating peritoneal sclerosis. Perit. Dial. Int. 30, 656–659 (2010).

    Article  PubMed  Google Scholar 

  152. Zemel, D. et al. Appearance of tumor necrosis factor-α and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int. 46, 1422–1430 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Patel, P. et al. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix Biol. 29, 97–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Mizutani, M. et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am. J. Physiol. Renal. Physiol. 298, F721–F733 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Ogata, S., Yorioka, N. & Kohno, N. Glucose and prednisolone alter basic fibroblast growth factor expression in peritoneal mesothelial cells and fibroblasts. J. Am. Soc. Nephrol. 12, 2787–2796 (2001).

    CAS  PubMed  Google Scholar 

  156. Vargha, R. et al. Ex vivo reversal of in vivo transdifferentiation in mesothelial cells grown from peritoneal dialysate effluents. Nephrol. Dial. Transplant. 21, 2943–2947 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Throckmorton, D. C., Brogden, A. P., Min, B., Rasmussen, H. & Kashgarian, M. PDGF and TGF-β mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int. 48, 111–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Katsutani, M., Ito, T., Masaki, T., Kohno, N. & Yorioka, N. Glucose-based PD solution, but not icodextrin-based PD solution, induces plasminogen activator inhibitor-1 and tissue-type plasminogen activator in human peritoneal mesothelial cells via ERK1/2. Ther. Apher. Dial. 11, 94–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Kurata, K. et al. Tissue-type plasminogen activator deficiency attenuates peritoneal fibrosis in mice. Am. J. Physiol. Renal Physiol. 297, F1510–F1517 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Collier, I. E. et al. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 263, 6579–6587 (1988).

    CAS  PubMed  Google Scholar 

  161. Kim, J. J. et al. High glucose decreases collagenase expression and increases TIMP expression in cultured human peritoneal mesothelial cells. Nephrol. Dial. Transplant. 23, 534–541 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Hirahara, I., Ogawa, Y., Kusano, E. & Asano, Y. Activation of matrix metalloproteinase-2 causes peritoneal injury during peritoneal dialysis in rats. Nephrol. Dial. Transplant. 19, 1732–1741 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Ro, Y. et al. Inhibitory effects of matrix metalloproteinase inhibitor ONO-4817 on morphological alterations in chlorhexidine gluconate-induced peritoneal sclerosis rats. Nephrol. Dial. Transplant. 22, 2838–2848 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Alscher, D. M., Braun, N., Biegger, D. & Fritz, P. Peritoneal mast cells in peritoneal dialysis patients, particularly in encapsulating peritoneal sclerosis patients. Am. J. Kidney. Dis. 49, 452–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Leibovich, S. J. et al. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 329, 630–632 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. R. Korte and D. E. Sampimon contributed equally to all aspects of this manuscript. All authors were involved in researching data for article, discussion of content, writing, reviewing and editing of manuscript before submission.

Corresponding author

Correspondence to Mario R. Korte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korte, M., Sampimon, D., Betjes, M. et al. Encapsulating peritoneal sclerosis: the state of affairs. Nat Rev Nephrol 7, 528–538 (2011). https://doi.org/10.1038/nrneph.2011.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing