Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of muscle wasting in chronic kidney disease

Key Points

  • Muscle atrophy frequently complicates the course of chronic kidney disease (CKD) and is associated with excess morbidity and mortality

  • CKD-induced mechanisms that cause muscle atrophy include activation of the ubiquitin–proteasome system, caspase-3 and myostatin

  • Triggers that activate proteolysis in CKD include metabolic acidosis, defects in insulin/insulin-like growth factor 1 (IGF-1) intracellular signalling, inflammation and catabolic responses to microRNAs

  • Current strategies aimed at preventing muscle atrophy include correction of acidosis plus exercise; specific therapies that inhibit myostatin or signal transducer and activator of transcription 3 (Stat3) are being developed

Abstract

In patients with chronic kidney disease (CKD), loss of cellular proteins increases the risks of morbidity and mortality. Persistence of muscle protein catabolism in CKD results in striking losses of muscle proteins as whole-body protein turnover is great; even small but persistent imbalances between protein synthesis and degradation cause substantial protein loss. No reliable methods to prevent CKD-induced muscle wasting currently exist, but mechanisms that control cellular protein turnover have been identified, suggesting that therapeutic strategies will be developed to suppress or block protein loss. Catabolic pathways that cause protein wasting include activation of the ubiquitin–proteasome system (UPS), caspase-3, lysosomes and myostatin (a negative regulator of skeletal muscle growth). These pathways can be initiated by complications associated with CKD, such as metabolic acidosis, defective insulin signalling, inflammation, increased angiotensin II levels, abnormal appetite regulation and impaired microRNA responses. Inflammation stimulates cellular signalling pathways that activate myostatin, which accelerates UPS-mediated catabolism. Blocking this pathway can prevent loss of muscle proteins. Myostatin inhibition could yield new therapeutic directions for blocking muscle protein wasting in CKD or disorders associated with its complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of skeletal muscle regeneration.
Figure 2: Chronic kidney disease-induced protein degradation by the UPS.
Figure 3: Insulin/IGF-1 signalling stimulates protein synthesis and suppresses protein degradation.
Figure 4: A simplified mechanism of myostatin-induced muscle atrophy.

Similar content being viewed by others

References

  1. Griffiths, R. D. Muscle mass, survival, and the elderly ICU patient. Nutrition 12, 456–458 (1996).

    CAS  PubMed  Google Scholar 

  2. Windsor, J. A. & Hill, G. L. Risk factors for postoperative pneumonia. The importance of protein depletion. Ann. Surg. 208, 209–214 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gracia-Iguacel, C. et al. Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a centre in Spain. Nefrologia 33, 495–505 (2013).

    PubMed  Google Scholar 

  4. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    CAS  PubMed  Google Scholar 

  5. United States Renal Data System. USRDS 2009 Annual Data Report: Atlas of End-Stage Renal Disease in the United States [online], (2009).

  6. Lowrie, E. G. & Lew, N. L. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 15, 458–482 (1990).

    CAS  PubMed  Google Scholar 

  7. Stenvinkel, P., Heimbürger, O. & Lindholm, B. Wasting, but not malnutrition, predicts cardiovascular mortality in end-stage renal disease. Nephrol. Dial. Transplant. 19, 2181–2183 (2004).

    PubMed  Google Scholar 

  8. Carrero, J. J. et al. Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. Clin. Nutr. 27, 557–564 (2008).

    PubMed  Google Scholar 

  9. Hakim, R. M. & Lazarus, J. M. Initiation of dialysis. J. Am. Soc. Nephrol. 6, 1319–1328 (1995).

    CAS  PubMed  Google Scholar 

  10. Mitch, W. E. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J. Clin. Invest. 110, 437–439 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fouque, D. et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    CAS  PubMed  Google Scholar 

  12. Abrass, C. K. Overview: obesity: what does it have to do with kidney disease? J. Am. Soc. Nephrol. 15, 2768–2772 (2004).

    PubMed  Google Scholar 

  13. Ikizler, T. A. et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am. J. Physiol. Endocrinol. Metab. 282, E107–E116 (2002).

    CAS  PubMed  Google Scholar 

  14. Pupim, L. B. et al. Intradialytic parenteral nutrition improves protein and energy homeostasis in chronic hemodialysis patients. J. Clin. Invest. 110, 483–492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pupim, L. B., Majchrzak, K. M., Flakoll, P. J. & Ikizler, T. A. Intradialytic oral nutrition improves protein homeostasis in chronic hemodialysis patients with deranged nutritional status. J. Am. Soc. Nephrol. 17, 3149–3157 (2006).

    CAS  PubMed  Google Scholar 

  16. Carrero, J. J. et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J. Ren. Nutr. 23, 77–90 (2013).

    PubMed  Google Scholar 

  17. Cano, N. J. et al. Intradialytic parenteral nutrition does not improve survival in malnourished hemodialysis patients: a 2-year multicenter, prospective, randomized study. J. Am. Soc. Nephrol. 18, 2583–2591 (2007).

    CAS  PubMed  Google Scholar 

  18. Dobre, M., Meyer, T. W. & Hostetter, T. H. Searching for uremic toxins. Clin. J. Am. Soc. Nephrol. 8, 322–327 (2013).

    CAS  PubMed  Google Scholar 

  19. Mitch, W. E. & Ikizler, T. A. (Eds) Handbook of Nutrition and the Kidney (Lippincott Williams & Wilkins, 2010).

    Google Scholar 

  20. Tripathy, K., Klahr, S. & Lotero, H. Utilization of exogenous urea nitrogen in malnourished adults. Metabolism 19, 253–262 (1970).

    CAS  PubMed  Google Scholar 

  21. Kaysen, G. A. et al. Inflammation and reduced albumin synthesis associated with stable decline in serum albumin in hemodialysis patients. Kidney Int. 65, 1408–1415 (2004).

    CAS  PubMed  Google Scholar 

  22. Smith, G., Robinson, P. H. & Fleck, A. Serum albumin distribution in early treated anorexia nervosa. Nutrition 12, 677–684 (1996).

    CAS  PubMed  Google Scholar 

  23. Mitch, W. E. & Goldberg, A. L. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N. Engl. J. Med. 335, 1897–1905 (1996).

    CAS  PubMed  Google Scholar 

  24. Zhang, L., Wang, X. H., Wang, H., Du, J. & Mitch, W. E. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy. J. Am. Soc. Nephrol. 21, 419–427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grefte, S., Kuijpers-Jagtman, A. M., Torensma, R. & Von den Hoff, J. W. Skeletal muscle development and regeneration. Stem Cells Dev. 16, 857–868 (2007).

    CAS  PubMed  Google Scholar 

  26. Ding, H., Gao, X. L., Hirschberg, R., Vadgama, J. V. & Kopple, J. D. Impaired actions of insulin-like growth factor 1 on protein synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J. Clin. Invest. 97, 1064–1075 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Castellino, P. et al. Glucose and amino acid metabolism in chronic renal failure: effect of insulin and amino acids. Am. J. Physiol. 262, F168–F176 (1992).

    CAS  PubMed  Google Scholar 

  28. Adey, D., Kumar, R., McCarthy, J. T. & Nair, K. S. Reduced synthesis of muscle proteins in chronic renal failure. Am. J. Physiol. Endocrinol. Metab. 278, E219–E225 (2000).

    CAS  PubMed  Google Scholar 

  29. Bohé, J., Low, A., Wolfe, R. R. & Rennie, M. J. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J. Physiol. 552, 315–324 (2003).

    PubMed  PubMed Central  Google Scholar 

  30. May, R. C., Kelly, R. A. & Mitch, W. E. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis. J. Clin. Invest. 79, 1099–1103 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X. H., Du, J., Klein, J. D., Bailey, J. L. & Mitch, W. E. Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int. 76, 751–759 (2009).

    CAS  PubMed  Google Scholar 

  32. Bailey, J. L. et al. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J. Clin. Invest. 97, 1447–1453 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bailey, J. L., Zheng, B., Hu, Z., Price, S. R. & Mitch, W. E. Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J. Am. Soc. Nephrol. 17, 1388–1394 (2006).

    CAS  PubMed  Google Scholar 

  34. Raj, D. S. et al. Protein turnover and amino acid transport kinetics in end-stage renal disease. Am. J. Physiol. Endocrinol. Metab. 286, E136–E143 (2004).

    CAS  PubMed  Google Scholar 

  35. Reaich, D. et al. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation. Am. J. Physiol. 265, E230–E235 (1993).

    CAS  PubMed  Google Scholar 

  36. Ballmer, P. E. et al. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J. Clin. Invest. 95, 39–45 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–1819 (2006).

    CAS  PubMed  Google Scholar 

  38. Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771 (1994).

    CAS  PubMed  Google Scholar 

  39. Lecker, S. H. & Mitch, W. E. Proteolysis by the ubiquitin-proteasome system and kidney disease. J. Am. Soc. Nephrol. 22, 821–824 (2011).

    CAS  PubMed  Google Scholar 

  40. Wang, X. H. & Mitch, W. E. Muscle wasting from kidney failure—a model for catabolic conditions. Int. J. Biochem. Cell Biol. 45, 2230–2238 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Saric, T., Graef, C. I. & Goldberg, A. L. Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J. Biol. Chem. 279, 46723–46732 (2004).

    CAS  PubMed  Google Scholar 

  42. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).

    CAS  PubMed  Google Scholar 

  43. Du, J. et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J. Clin. Invest. 113, 115–123 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Workeneh, B. T. et al. Development of a diagnostic method for detecting increased muscle protein degradation in patients with catabolic conditions. J. Am. Soc. Nephrol. 17, 3233–3239 (2006).

    CAS  PubMed  Google Scholar 

  45. Wang, X. H. et al. Caspase-3 cleaves specific 19 S proteasome subunits in skeletal muscle stimulating proteasome activity. J. Biol. Chem. 285, 21249–21257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004).

    CAS  PubMed  Google Scholar 

  47. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    CAS  PubMed  Google Scholar 

  48. Sandri, M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 45, 2121–2129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mitch, W. E. et al. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J. Clin. Invest. 93, 2127–2133 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Price, S. R. et al. Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription. J. Clin. Invest. 98, 1703–1708 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, Z., Wang, H., Lee, I. H., Du, J. & Mitch, W. E. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J. Clin. Invest. 119, 3059–3069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Han, H. Q., Zhou, X., Mitch, W. E. & Goldberg, A. L. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int. J. Biochem. Cell Biol. 45, 2333–2347 (2013).

    CAS  PubMed  Google Scholar 

  53. Sartori, R. et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol. 296, C1248–C1257 (2009).

    CAS  PubMed  Google Scholar 

  54. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).

    CAS  PubMed  Google Scholar 

  55. Zhang, L. et al. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. FASEB J. 25, 1653–1663 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, S. W. et al. Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase. J. Am. Soc. Nephrol. 15, 1537–1545 (2004).

    CAS  PubMed  Google Scholar 

  57. Chanutin, A. & Ludewig, S. Experimental renal insufficiency produced by partial nephrectomy. V. Diets containing whole dried meat. Arch. Intern. Med. 58, 60–80 (1936).

    CAS  Google Scholar 

  58. May, R. C., Kelly, R. A. & Mitch, W. E. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid-dependent mechanism. J. Clin. Invest. 77, 614–621 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. de Brito-Ashurst, I., Varagunam, M., Raftery, M. J. & Yaqoob, M. M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 20, 2075–2084 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Isozaki, U., Mitch, W. E., England, B. K. & Price, S. R. Protein degradation and increased mRNAs encoding proteins of the ubiquitin-proteasome proteolytic pathway in BC3H1 myocytes require an interaction between glucocorticoids and acidification. Proc. Natl Acad. Sci. USA 93, 1967–1971 (1996).

    CAS  PubMed  Google Scholar 

  61. Price, S. R., England, B. K., Bailey, J. L., Van Vreede, K. & Mitch, W. E. Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle. Am. J. Physiol. 267, C955–C960 (1994).

    CAS  PubMed  Google Scholar 

  62. Bailey, J. L., England, B. K., Long, R. C. Jr, Weissman, J. & Mitch, W. E. Experimental acidemia and muscle cell pH in chronic acidosis and renal failure. Am. J. Physiol. 269, C706–C712 (1995).

    CAS  PubMed  Google Scholar 

  63. Folli, F., Saad, M. J. & Kahn, C. R. Insulin receptor/IRS-1/PI 3-kinase signaling system in corticosteroid-induced insulin resistance. Acta Diabetol. 33, 185–192 (1996).

    CAS  PubMed  Google Scholar 

  64. DeFronzo, R. A. & Beckles, A. D. Glucose intolerance following chronic metabolic acidosis in man. Am. J. Physiol. 236, E328–E334 (1979).

    CAS  PubMed  Google Scholar 

  65. Wang, X., Hu, Z., Hu, J., Du, J. & Mitch, W. E. Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 147, 4160–4168 (2006).

    CAS  PubMed  Google Scholar 

  66. Zhou, Q., Du, J., Hu, Z., Walsh, K. & Wang, X. H. Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and fatty acids. Endocrinology 148, 5696–5705 (2007).

    CAS  PubMed  Google Scholar 

  67. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. & Sugimoto, C. PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983–8998 (2003).

    CAS  PubMed  Google Scholar 

  68. Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).

    CAS  PubMed  Google Scholar 

  69. Musarò, A. et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27, 195–200 (2001).

    PubMed  Google Scholar 

  70. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    CAS  PubMed  Google Scholar 

  71. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hu, Z. et al. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes 59, 1312–1320 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    CAS  PubMed  Google Scholar 

  74. Dupont, J., Renou, J. P., Shani, M., Hennighausen, L. & LeRoith, D. PTEN overexpression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium. J. Clin. Invest. 110, 815–825 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, Z. et al. PTEN expression contributes to the regulation of muscle protein degradation in diabetes. Diabetes 56, 2449–2456 (2007).

    CAS  PubMed  Google Scholar 

  76. Thomas, S. S., Dong, Y., Zhang, L. & Mitch, W. E. Signal regulatory protein-α interacts with the insulin receptor contributing to muscle wasting in chronic kidney disease. Kidney Int. 84, 308–316 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheung, W. W., Paik, K. H. & Mak, R. H. Inflammation and cachexia in chronic kidney disease. Pediatr. Nephrol. 25, 711–724 (2010).

    PubMed  Google Scholar 

  78. Zhang, L. et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J. Am. Soc. Nephrol. 20, 604–612 (2009).

    PubMed  PubMed Central  Google Scholar 

  79. Menon, V. et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 68, 766–772 (2005).

    CAS  PubMed  Google Scholar 

  80. Knight, E. L. et al. Kidney dysfunction, inflammation, and coronary events: a prospective study. J. Am. Soc. Nephrol. 15, 1897–1903 (2004).

    PubMed  Google Scholar 

  81. Hung, A. M., Ellis, C. D., Shintani, A., Booker, C. & Ikizler, T. A. IL-1β receptor antagonist reduces inflammation in hemodialysis patients. J. Am. Soc. Nephrol. 22, 437–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Song, Y. H. et al. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J. Clin. Invest. 115, 451–458 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M. F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 277, 42394–42398 (2002).

    CAS  PubMed  Google Scholar 

  84. Zhang, L. et al. Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. Am. J. Pathol. 175, 2518–2527 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, L. et al. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 18, 368–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheung, W. et al. Role of leptin and melanocortin signaling in uremia-associated cachexia. J. Clin. Invest. 115, 1659–1665 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheung, W. W. et al. Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice. J. Am. Soc. Nephrol. 18, 2517–2524 (2007).

    CAS  PubMed  Google Scholar 

  88. Cheung, W. W., Rosengren, S., Boyle, D. L. & Mak, R. H. Modulation of melanocortin signaling ameliorates uremic cachexia. Kidney Int. 74, 180–186 (2008).

    CAS  PubMed  Google Scholar 

  89. Cheung, W. W. & Mak, R. H. Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease. Am. J. Physiol. Renal Physiol. 303, F1315–F1324 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, X. H. et al. Decreased miR-29 suppresses myogenesis in CKD. J. Am. Soc. Nephrol. 22, 2068–2076 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. Wada, S. et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 286, 38456–38465 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, Z. et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl Acad. Sci. USA 106, 12103–12108 (2009).

    CAS  PubMed  Google Scholar 

  93. Xu, J. et al. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82, 401–411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Small, E. M. et al. Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc. Natl Acad. Sci. USA 107, 4218–4223 (2010).

    CAS  PubMed  Google Scholar 

  95. Dey, B. K., Gagan, J. & Dutta, A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol. Cell. Biol. 31, 203–214 (2011).

    CAS  PubMed  Google Scholar 

  96. Alexander, M. S. et al. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet. Muscle 1, 27 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Elia, L. et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120, 2377–2385 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, M. B., Xu, H., Xie, S. J., Zhou, H. & Qu, L. H. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One 6, e29173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yan, B., Zhu, C. D., Guo, J. T., Zhao, L. H. & Zhao, J. L. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J. Exp. Biol. 216, 1265–1269 (2013).

    CAS  PubMed  Google Scholar 

  100. Huang, Z., Chen, X., Yu, B., He, J. & Chen, D. MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem. Biophys. Res. Commun. 423, 265–269 (2012).

    CAS  PubMed  Google Scholar 

  101. Allen, D. L. & Loh, A. S. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am. J. Physiol. Cell Physiol. 300, C124–C137 (2011).

    CAS  PubMed  Google Scholar 

  102. Chen, X., Huang, Z., Chen, D., Yang, T. & Liu, G. MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells. Int. J. Mol. Sci. 14, 14076–14084 (2013).

    PubMed  PubMed Central  Google Scholar 

  103. Fouque, D. & Mitch, W. E. in Brenner and Rector's The Kidney 9th edn Ch. 60 (Eds Taal, M. W. et al.) 2170–2204 (Elsevier, 2012).

    Google Scholar 

  104. Moore, L. W. et al. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 83, 724–732 (2013).

    CAS  PubMed  Google Scholar 

  105. Chen, Y., Sood, S., Biada, J., Roth, R. & Rabkin, R. Increased workload fully activates the blunted IRS-1/PI3-kinase/Akt signaling pathway in atrophied uremic muscle. Kidney Int. 73, 848–855 (2008).

    CAS  PubMed  Google Scholar 

  106. Sun, D. F., Chen, Y. & Rabkin, R. Work-induced changes in skeletal muscle IGF-1 and myostatin gene expression in uremia. Kidney Int. 70, 453–459 (2006).

    CAS  PubMed  Google Scholar 

  107. Majchrzak, K. M., Pupim, L. B., Flakoll, P. J. & Ikizler, T. A. Resistance exercise augments the acute anabolic effects of intradialytic oral nutritional supplementation. Nephrol. Dial. Transplant. 23, 1362–1369 (2008).

    CAS  PubMed  Google Scholar 

  108. Kopple, J. D. et al. Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle. J. Am. Soc. Nephrol. 18, 2975–2986 (2007).

    CAS  PubMed  Google Scholar 

  109. Onda, A. et al. Acupuncture ameliorated skeletal muscle atrophy induced by hindlimb suspension in mice. Biochem. Biophys. Res. Commun. 410, 434–439 (2011).

    CAS  PubMed  Google Scholar 

  110. Takaoka, Y. et al. Electroacupuncture suppresses myostatin gene expression: cell proliferative reaction in mouse skeletal muscle. Physiol. Genomics 30, 102–110 (2007).

    CAS  PubMed  Google Scholar 

  111. Hu, L. et al. Low-frequency electrical stimulation attenuates muscle atrophy in CKD—a potential treatment strategy. J. Am. Soc. Nephrol. (in press).

  112. Kobayashi, S., Maesato, K., Moriya, H., Ohtake, T. & Ikeda, T. Insulin resistance in patients with chronic kidney disease. Am. J. Kidney Dis. 45, 275–280 (2005).

    CAS  PubMed  Google Scholar 

  113. Wagner, K. R. et al. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 63, 561–571 (2008).

    CAS  PubMed  Google Scholar 

  114. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    CAS  PubMed  Google Scholar 

  115. Redell, M. S., Ruiz, M. J., Alonzo, T. A., Gerbing, R. B. & Tweardy, D. J. Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood 117, 5701–5709 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Macdonald, J. H. et al. Nandrolone decanoate as anabolic therapy in chronic kidney disease: a randomized phase II dose-finding study. Nephron Clin. Pract. 106, c125–c135 (2007).

    CAS  PubMed  Google Scholar 

  117. Butterfield, G. E. et al. Effect of rhGH and rhIGF-I treatment on protein utilization in elderly women. Am. J. Physiol. 272, E94–E99 (1997).

    CAS  PubMed  Google Scholar 

  118. Bonaldo, P. & Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25–39 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Garibotto, G. et al. Effects of recombinant human growth hormone on muscle protein turnover in malnourished hemodialysis patients. J. Clin. Invest. 99, 97–105 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun, D. F. et al. Chronic uremia attenuates growth hormone-induced signal transduction in skeletal muscle. J. Am. Soc. Nephrol. 15, 2630–2636 (2004).

    CAS  PubMed  Google Scholar 

  121. Mehls, O., Ritz, E., Hunziker, E. B., Tönshoff, B. & Heinrich, U. Role of growth hormone in growth failure of uraemia—perspectives for application of recombinant growth hormone. Acta Paediatr. Scand. Suppl. 343, 118–126 (1988).

    CAS  PubMed  Google Scholar 

  122. Cohn, R. D. et al. Angiotensin II type 1 receptor blockade attenuates TGF-β-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204–210 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Burks, T. N. et al. Losartan restores skeletal muscle remodeling and protects against disuse atrophy in sarcopenia. Sci. Transl. Med. 3, 82ra37 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. Barazzoni, R., Gortan Cappellari, G., Zanetti, M. & Guarnieri, G. Ghrelin and muscle metabolism in chronic uremia. J. Ren. Nutr. 22, 171–175 (2012).

    CAS  PubMed  Google Scholar 

  125. Porporato, P. E. et al. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J. Clin. Invest. 123, 611–622 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wynne, K. et al. Subcutaneous ghrelin enhances acute food intake in malnourished patients who receive maintenance peritoneal dialysis: a randomized, placebo-controlled trial. J. Am. Soc. Nephrol. 16, 2111–2118 (2005).

    CAS  PubMed  Google Scholar 

  127. Cheung, W. W. et al. A pegylated leptin antagonist ameliorates CKD-associated cachexia in mice. J. Am. Soc. Nephrol. 25, 119–128 (2014).

    CAS  PubMed  Google Scholar 

  128. Caron, A. Z. et al. The proteasome inhibitor MG132 reduces immobilization-induced skeletal muscle atrophy in mice. BMC Musculoskelet. Disord. 12, 185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jamart, C., Raymackers, J. M., Li An, G., Deldicque, L. & Francaux, M. Prevention of muscle disuse atrophy by MG132 proteasome inhibitor. Muscle Nerve 43, 708–716 (2011).

    CAS  PubMed  Google Scholar 

  130. Enrico, O. et al. Unexpected cardiotoxicity in haematological bortezomib treated patients. Br. J. Haematol. 138, 396–397 (2007).

    PubMed  Google Scholar 

  131. Eddins, M. J. et al. Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem. Biophys. 60, 113–118 (2011).

    CAS  PubMed  Google Scholar 

  132. Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278–284 (2006).

    CAS  PubMed  Google Scholar 

  133. Russell, A. P. et al. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol. Dis. 49C, 107–117 (2012).

    Google Scholar 

  134. Wang, L. et al. MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms. Exp. Cell Res. 318, 2324–2334 (2012).

    CAS  PubMed  Google Scholar 

  135. Wang, H. et al. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 14, 369–381 (2008).

    CAS  PubMed  Google Scholar 

  136. Winbanks, C. E. et al. TGF-β regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J. Biol. Chem. 286, 13805–13814 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Mersey, B. D., Jin, P. & Danner, D. J. Human microRNA (miR29b) expression controls the amount of branched chain α-ketoacid dehydrogenase complex in a cell. Hum. Mol. Genet. 14, 3371–3377 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIAMS R01 AR060268 (X.H.W.) and NIDDK R37 DK037175 (W.E.M.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and edited the manuscript before submission.

Corresponding author

Correspondence to Xiaonan H. Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Mitch, W. Mechanisms of muscle wasting in chronic kidney disease. Nat Rev Nephrol 10, 504–516 (2014). https://doi.org/10.1038/nrneph.2014.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing