Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early chronic kidney disease: diagnosis, management and models of care

Key Points

  • Chronic kidney disease (CKD) is associated with early-onset cardiovascular disease, end-stage renal disease and premature death

  • Patients with mild-to-moderate reductions in estimated glomerular filtration rates often have comorbidities that are more relevant to their current and future well-being than a CKD diagnosis

  • An integrated care pathway is required for patients with CKD

  • A growing number of experiences from different countries have shown that primary care models can lead to improvements in cardiovascular and renal health outcomes among CKD patients

  • More research into early identification, screening, monitoring and management strategies for CKD is required; this research should include the establishment of CKD registries to permit health–economic analyses

Abstract

Chronic kidney disease (CKD) is prevalent in many countries, and the costs associated with the care of patients with end-stage renal disease (ESRD) are estimated to exceed US$1 trillion globally. The clinical and economic rationale for the design of timely and appropriate health system responses to limit the progression of CKD to ESRD is clear. Clinical care might improve if early-stage CKD with risk of progression to ESRD is differentiated from early-stage CKD that is unlikely to advance. The diagnostic tests that are currently used for CKD exhibit key limitations; therefore, additional research is required to increase awareness of the risk factors for CKD progression. Systems modelling can be used to evaluate the impact of different care models on CKD outcomes and costs. The US Indian Health Service has demonstrated that an integrated, system-wide approach can produce notable benefits on cardiovascular and renal health outcomes. Economic and clinical improvements might, therefore, be possible if CKD is reconceptualized as a part of primary care. This Review discusses which early CKD interventions are appropriate, the optimum time to provide clinical care, and the most suitable model of care to adopt.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of CKD by stage in the USA between 1988 and 2012.
Figure 2: Breakdown of chronic kidney disease (CKD) by stage (1–5) in selected countries with data available from the 2000s.9,18,19,20,21,22,23
Figure 3: Comparison of CKD prevalence as determined using different formulae to estimate glomerular filtration rate (CKD–EPI creatinine versus the four-variable MDRD study) in the USA between 1999 and 2004.
Figure 4: An integrated care continuum for CKD that is consistent with the chronic care model.

Similar content being viewed by others

References

  1. James, M. T., Haemmelgarn, B. R. & Tonelli, M. Early recognition and prevention of chronic kidney disease. Lancet 376, 162–162 (2010).

    Article  Google Scholar 

  2. Sarnak, M. J. et al. Kidney disease as a risk factor for development of cardiovascular disease–a statement from the American Heart Association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108, 2154–2169 (2003).

    Article  PubMed  Google Scholar 

  3. Chen, R. A., Scott, S., Mattern, W. D., Mohini, R. & Nissenson, A. R. The case for disease management in chronic kidney disease. Dis. Manag. 9, 86–92 (2006).

    Article  PubMed  Google Scholar 

  4. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  5. Atkins, R. C. The epidemiology of chronic kidney disease. Kidney Int. Suppl. 94, S14–S18 (2005).

    Article  Google Scholar 

  6. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

  7. Levey, A. S. & Coresh, J. Chronic kidney disease. Lancet 379, 165–180 (2012).

    Article  PubMed  Google Scholar 

  8. Haynes, R. et al. Evaluating the contribution of the cause of kidney disease to prognosis in CKD: results from the Study of Heart and Renal Protection (SHARP). Am. J. Kidney Dis. 64, 40–48 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. United States Renal Data System. USRDS 2014 annual data report [online], (2015).

  10. Aitken, G. R. et al. Change in prevalence of chronic kidney disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010. BMJ Open 4, e005480 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Vecchi, A. F., Dratwa, M. & Wioedemann, M. E. Healthcare systems and end-stage renal disease (ESRD) therapies—an international review: costs and reimbursement/funding of ESRD therapies. Nephrol. Dial. Transplant. 14 (Suppl. 6), 31–41 (1999).

    Article  PubMed  Google Scholar 

  12. Stenvinkel, P. Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J. Int. Med. 268, 456–467 (2010).

    Article  CAS  Google Scholar 

  13. Feehally, J. et al. Early detection of chronic kidney disease. BMJ 337, a1618 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Levin, A. & Stevens, P. E. Early detection of CKD: the benefits, limitations and effects on prognosis. Nat. Rev. Nephrol. 7, 446–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Locatelli, F., Del Vecchio, L. & Pozzoni, P. The importance of early detection of chronic kidney disease. Nephrol. Dial. Transplant. 17, 2–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. El Nahas, A. M. & Bello, A. K. Chronic kidney disease: the global challenge. Lancet 365, 331–340 (2005).

    Article  Google Scholar 

  17. National Kidney Foundation. KIDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. Am. J. Kidney Dis. 39, S1–S266 (2002).

  18. Zhang, L. et al. Prevalence and factors associated with CKD: a population study from Beijing. Am. J. Kidney Dis. 51, 373–384 (2008).

    Article  PubMed  Google Scholar 

  19. Singh, A. K. et al. Epidemiology and risk factors of chronic kidney disease in India–results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. BMC Nephrol. 14, 114 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Imai, E. et al. Prevalence of chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 16, 621–630 (2009).

    Article  Google Scholar 

  21. Kim, S. et al. The prevalence of chronic kidney disease (CKD) and the associated factors to CKD in urban Korea: a population-based cross-sectional epidemiology study. J. Korean Med. Sci. 24 (Suppl. 1), S11–S21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Otero, A. et al. Prevalence of chronic renal disease in Spain: results of the EPIRCE study. Nefrologia 30, 78–86 (2010).

    PubMed  Google Scholar 

  23. Wen, C. P. et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462,293 adults in Taiwan. Lancet 371, 2173–2182 (2008).

    Article  PubMed  Google Scholar 

  24. Grams, M. E., Chow, E. K. H., Segev, D. L. & Coresh, J. Lifetime Incidence of CKD Stages 3–5 in the United States. Am. J. Kidney Dis. 62, 245–252 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mendu, M. L. et al. The usefulness of diagnostic testing in the initial evaluation of chronic kidney disease. JAMA Intern. Med. 175, 853–856 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. National Institute for Health and Clinical Care Excellence. Chronic kidney disease: early identification and management of chronic kidney disease in adults in primary and secondary care [online], (2014).

  27. Lindeman, R. D., Tobin, J. & Shock, N. W. Longitudinal-studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 33, 278–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. O'Hare, A. M. et al. Age affects outcomes in chronic kidney disease. J. Am. Soc. Nephrol. 18, 2758–2765 (2007).

    Article  PubMed  Google Scholar 

  29. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Glassock, R. J. & Winearls, C. Ageing and the glomerular filtration rate: truths and consequences. Trans. Am. Clin. Climatol. Assoc. 120, 419–428 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Turin, T. C. et al. Proteinuria and rate of change in kidney function in a community-based population. J. Am. Soc. Nephrol. 24, 1661–1667 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eriksen, B. O. & Ingebretsen, O. C. The progression of chronic kidney disease: A 10-year population-based study of the effects of gender and age. Kidney Int. 69, 375–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Speizer, F. E. & Tager, I. B. Epidemiology of chronic mucus hypersecretion and obstructive airways disease. Epidemiol. Rev. 1, 124–142 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Gansevoort, R. T. et al. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 80, 93–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levey, A. S. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 80, 17–28 (2011).

    Article  PubMed  Google Scholar 

  36. Fliser, D., Zeier, M., Nowack, R. & Ritz, E. Renal functional reserve in healthy elderly subjects. J. Am. Soc. Nephrol. 3, 1371–1377 (1993).

    CAS  PubMed  Google Scholar 

  37. Abdelhafiz, A. H., Brown, S. H., Bello, A. & El Nahas, M. Chronic kidney disease in older people: physiology, pathology or both? Nephron Clin. Pract. 116, c19–c24 (2010).

    Article  PubMed  Google Scholar 

  38. Jones, R. Trends in elderly diagnoses: links with multi-morbidity. British J. Healthcare Manage. 19, 553–558 (2013).

    Article  Google Scholar 

  39. Orueta, J. F., Nuno-Solinis, R., Garcia-Alvarez, A. & Alonso-Moran, E. Prevalence of multimorbidity according to the deprivation level among the elderly in the Basque Country. BMC Public Health 13, 918 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marengoni, A. et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res. Rev. 10, 430–439 (2011).

    Article  PubMed  Google Scholar 

  41. Glassock, R. J. & Winearls, C. Diagnosing chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 123–128 (2010).

    Article  PubMed  Google Scholar 

  42. Glassock, R. J. & Winearls, C. Screening for CKD with eGFR: Doubts and dangers. Clin. J. Am. Soc. Nephrol. 3, 1563–1568 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stevens, L. A., Coresh, J., Greene, T. & Levey, A. S. Assessing kidney function—measured and estimated glomerular filtration rate. N. Engl. J. Med. 354, 2473–2483 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Bauer, C., Melamed, M. L. & Hostetter, T. H. Staging of chronic kidney disease: time for a course correction. J. Am. Soc. Nephrol. 19, 844–846 (2008).

    Article  PubMed  Google Scholar 

  45. Tonelli, M. et al. Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Ann. Intern. Med. 154, 12–21 (2011).

    Article  PubMed  Google Scholar 

  46. Lin, J., Knight, E. L., Hogan, M. L. & Singh, A. K. A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease. J. Am. Soc. Nephrol. 14, 2573–2580 (2003).

    Article  PubMed  Google Scholar 

  47. Rule, A. D. et al. Measured and estimated GFR in healthy potential kidney donors. Am. J. Kidney Dis. 43, 112–119 (2004).

    Article  PubMed  Google Scholar 

  48. Poggio, E. D., Wang, X., Greene, T., Van Lente, F. & Hall, P. M. Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J. Am. Soc. Nephrol. 16, 459–466 (2005).

    Article  PubMed  Google Scholar 

  49. Stevens, L. A. et al. Impact of creatinine calibration on performance of GFR estimating equations in a pooled individual patient database. Am. J. Kidney Dis. 50, 21–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Murata, K. et al. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin. J. Am. Soc. Nephrol. 6, 1963–1972 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stevens, L. A. et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J. Am. Soc. Nephrol. 18, 2749–2757 (2007).

    Article  PubMed  Google Scholar 

  53. Hoffmann, A., Nimtz, M. & Conradt, H. S. Molecular characterization of beta-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology 7, 499–506 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Stevens, L. A. et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: A pooled analysis of 3,418 individuals with CKD. Am. J. Kidney Dis. 51, 395–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kilbride, H. S. et al. Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am. J. Kidney Dis. 61, 57–66 (2013).

    Article  PubMed  Google Scholar 

  56. Fan, L. et al. Comparing GFR estimating equations using cystatin C and creatinine in elderly individuals. J. Am. Soc. Nephrol. (2014).

  57. Schaeffner, E. S. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 157, 471–481 (2012).

    Article  PubMed  Google Scholar 

  58. Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Inker, L. A. et al. Expressing the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am. J. Kidney Dis. 58, 682–684 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Saydah, S. H. et al. Albuminuria prevalence in first morning void compared with previous random urine from adults in the National Health and Nutrition Examination Survey, 2009–2010 Clin. Chem. 59, 675–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Naresh, C. N., Hayen, A., Weening, A., Craig, J. C. & Chadban, S. J. Day-to-day variability in spot urine albumin-creatinine ratio. Am. J. Kidney Dis. 62, 1095–1101 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Bakker, S. J., Gansevoort, R. T. & de Zeeuw, D. Albuminuria: what can we expect from the determination of nonimmunoreactive albumin? Curr. Hypertens. Rep. 11, 111–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Witte, E. C. et al. First morning voids are more reliable than spot urine samples to assess microalbuminuria. J. Am. Soc. Nephrol. 20, 436–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brinkman, J. W. et al. Falsely low urinary albumin concentrations after prolonged frozen storage of urine samples. Clin. Chem. 51, 2181–2183 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Warram, J. H., Gearin, G., Laffel, L. & Krolewski, A. S. Effect of duration of type I diabetes on the prevalence of stages of diabetic nephropathy defined by urinary albumin/creatinine ratio J. Am. Soc. Nephrol. 7, 930–937 (1996).

    CAS  PubMed  Google Scholar 

  66. Long, D. A. et al. Albuminuria is associated with too few glomeruli and too much testosterone. Kidney Int. 83, 1118–1129 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lambers Heerspink, H. J. et al. Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am. J. Epidemiol. 168, 897–905 (2008).

    Article  PubMed  Google Scholar 

  68. Hallan, S. I. et al. Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J. Am. Soc. Nephrol. 20, 1069–1077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tangri, N. et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305, 1553–1559 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Tonelli, M. et al. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  71. Sehestedt, T. et al. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur. Heart J. 31, 883–891 (2010).

    Article  PubMed  Google Scholar 

  72. Jones-Burton, C. et al. An in-depth review of the evidence linking dietary salt intake and progression of chronic kidney disease. Am. J. Nephrol. 26, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Smyth, A. et al. The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int. 86, 1205–1212 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. McMahon, E. J. et al. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 24, 2096–2103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fink, H. A. et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a systematic review for the US Preventive Services Task Force and for an American College of Physicians Clinical Practice Guideline. Ann. Intern. Med. 156, 570–581 (2012).

    Article  PubMed  Google Scholar 

  76. Qaseem, A. et al. Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 159, 835–847 (2013).

    Article  PubMed  Google Scholar 

  77. American Society of Nephrology. ASN emphasizes need for early detection of kidney disease, a silent killer [online], (2013).

  78. Komenda, P. et al. Cost-effectiveness of primary screening for CKD: a systematic review. Am. J. Kidney Dis. 63, 789–797 (2014).

    Article  PubMed  Google Scholar 

  79. Menzin, J. et al. A review of the costs and cost effectiveness of interventions in chronic kidney disease implications for policy. Pharmacoeconomics 29, 839–861 (2011).

    Article  PubMed  Google Scholar 

  80. Morales, E., Valero, M. A., Leon, M., Hernandez, E. & Praga, M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am. J. Kidney Dis. 41, 319–327 (2003).

    Article  PubMed  Google Scholar 

  81. Saiki, A. et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int. J. Obes. (Lond.) 29, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  82. Solerte, S. B., Fioravanti, M., Schifino, N. & Ferrari, E. Effects of diet-therapy on urinary protein excretion albuminuria and renal haemodynamic function in obese diabetic patients with overt nephropathy. Int. J. Obes. 13, 203–211 (1989).

    CAS  PubMed  Google Scholar 

  83. Navaneethan, S. D. et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 1565–1574 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Heiwe, S. & Jacobson, S. H. Exercise training for adults with chronic kidney disease. Cochrane Database Syst. Rev. Issue 10. Art. No.: CD003236. http://dx.doi.org/10.1002/14651858.CD003236.pub2.

  85. Robinson-Cohen, C. et al. Physical activity and change in estimated GFR among persons with CKD. J. Am. Soc. Nephrol. 25, 399–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Robinson-Cohen, C. et al. Physical activity and rapid decline in kidney function among older adults. Arch. Intern. Med. 169, 2116–2123 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sawicki, P. T. et al. Smoking is associated with progression of diabetic nephropathy. Diabetes Care 17, 126–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Chase, H. P. et al. Cigarette-smoking increases the risk of albuminuria among subjects with type-I diabetes. JAMA 265, 614–617 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Schiffl, H., Lang, S. M. & Fischer, R. Stopping smoking slows accelerated progression of renal failure in primary renal disease. J. Nephrol. 15, 270–274 (2002).

    PubMed  Google Scholar 

  90. Dalrymple, L. S. et al. Chronic kidney disease and the risk of end-stage renal disease versus death. J. Gen. Intern. Med. 26, 379–385 (2011).

    Article  PubMed  Google Scholar 

  91. Go, A. S., Chertow, G. M., Fan, D. J., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Taal, M. W. Arterial stiffness in chronic kidney disease: an update. Curr. Opin. Nephrol. Hypertens. 23, 169–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Upadhyay, A. et al. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 157, 251–262 (2012).

    Article  PubMed  Google Scholar 

  94. Palmer, S. C. et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst. Rev. Issue 5. Art. No.:CD007784 http://dx.doi.org/10.1002/14651858.CD007784.pub2.

  95. Tonelli, M. et al. Association between LDL-C and risk of myocardial infarction in CKD. J. Am. Soc. Nephrol. 24, 979–986 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Upadhyay, A., Earley, A., Haynes, S. M. & Uhlig, K. Systematic review: blood pressure target in chronic kidney disease and proteinuria as an effect modifier. Ann. Intern. Med. 154, 541–548 (2011).

    Article  PubMed  Google Scholar 

  97. Ruggenenti, P. et al. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril efficacy in nephropathy. Lancet 352, 1252–1256 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Rodby, R. A. et al. The Irbesartan type II diabetic nephropathy trial: study design and baseline patient characteristics. For the Collaborative Study Group. Nephrol. Dial. Transplant. 15, 487–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Sharma, P. et al. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for adults with early (stage 1 to 3) non-diabetic chronic kidney disease. Cochrane Database Syst. Rev. Issue 10. Art. No.: CD007751 http://dx.doi.org/10.1002/14651858.CD007751.pub2.

  101. Jager, K. J. & van Dijk, P. C. W. Has the rise in the incidence of renal replacement therapy in developed countries come to an end? Nephrol. Dial. Transplant. 22, 678–680 (2007).

    Article  PubMed  Google Scholar 

  102. Vassalotti, J. A., Gracz-Weinstein, L., Gannon, M. R. & Brown, W. W. Targeted screening and treatment of chronic kidney disease: lessons learned from the kidney early evaluation program. Dis. Manag. Health Out. 14, 341–352 (2006).

    Article  Google Scholar 

  103. Katz, I. J., Gerntholtz, T. E., van Deventer, M., Schneider, H. & Naicker, S. Is there a need for early detection programmes for chronic kidney disease? Clin. Nephrol. 74, S113–S118 (2010).

    Article  PubMed  Google Scholar 

  104. Lash, J. P. et al. Chronic Renal Insufficiency Cohort (CRIC) Study: baseline characteristics and associations with kidney function. Clin. J. Am. Soc. Nephrol. 4, 1302–1311 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Feldman, H. I. et al. The Chronic Renal Insufficiency Cohort (CRIC) study: design and methods. J. Am. Soc. Nephrol. 14, S148–S153 (2003).

    Article  PubMed  Google Scholar 

  106. Kronenberg, F. Emerging risk factors and markers of chronic kidney disease progression. Nat. Rev. Nephrol. 5, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Johnson, E. S., Smith, D. H., Thorp, M. L., Yang, X. H. & Juhaeri, J. Predicting the risk of end-stage renal disease in the population-based setting: a retrospective case-control study. BMC Nephrol. 12, 17 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Johnson, E. S., Thorp, M. L., Platt, R. W. & Smith, D. H. Predicting the risk of dialysis and transplant among patients with CKD: a retrospective cohort study. Am. J. Kid. Dis. 52, 653–660 (2008).

    Article  PubMed  Google Scholar 

  109. Levin, A., Djurdjev, O., Beaulieu, M. & Er, L. Variability and risk factors for kidney disease progression and death following attainment of stage 4 CKD in a referred cohort. Am. J. Kid. Dis. 52, 661–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. McClellan, W. M. & Flanders, W. D. Risk factors for progressive chronic kidney disease. J. Am. Soc. Nephrol. 14 (Suppl. 2), S65–S70 (2003).

    Article  PubMed  Google Scholar 

  111. Peralta, C. A. et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 305, 1545–1552 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mahmoodi, B. K. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis. Lancet 380, 1649–1661 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Fox, C. S. et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet 380, 1662–1673 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 30, 427–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Leoncini, G. et al. Global risk stratification in primary hypertension: the role of the kidney. J. Hypertens. 26, 427–432 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Perkins, R. M. et al. GFR Decline and Mortality Risk among Patients with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 6, 1879–1886 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Saweirs, W. W. M. & Goddard, J. What are the best treatments for early chronic kidney disease? A background paper prepared for the UK consensus conference on early chronic kidney disease. Nephrol. Dial. Transplant. 22, 31–38 (2007).

    Article  Google Scholar 

  118. Loud, F. & Gallagher, H. Kidney health: delivering excellence. Kidney Health Report 1–52 (2013).

  119. Shahinian, V. B. & Saran, R. The role of primary care in the management of the chronic kidney disease population. Adv. Chronic Kidney Dis. 17, 246–253 (2010).

    Article  PubMed  Google Scholar 

  120. Levin, A. The need for optimal and coordinated management of CKD. Kidney Int. 68, 7–10 (2005).

    Article  Google Scholar 

  121. Bodenheimer, T., Wagner, E. H. & Grumbach, K. Improving primary care for patients with chronic illness. JAMA 288, 1775–1779 (2002).

    Article  PubMed  Google Scholar 

  122. Bodenheimer, T., Wagner, E. H. & Grumbach, K. Improving primary care for patients with chronic illness—the chronic care model, part 2. JAMA 288, 1909–1914 (2002).

    Article  PubMed  Google Scholar 

  123. Wagner, E. H. Chronic disease management: what will it take to improve care for chronic illness? Eff. Clin. Pract. 1, 2–4 (1998).

    CAS  PubMed  Google Scholar 

  124. Wagner, E. H., Austin, B. T. & VonKorff, M. Organizing care for patients with chronic illness. Milbank Q. 74, 511–544 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Hajjar, I., Kotchen, J. M. & Kotchen, T. A. Hypertension: Trends in prevalence, incidence, and control. Annu. Rev. Public Health 27, 465–490 (2006).

    Article  PubMed  Google Scholar 

  126. Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1078–F1094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chawla, L. S. & Kimmel, P. L. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 82, 516–524 (2012).

    Article  PubMed  Google Scholar 

  130. Rewa, O. & Bagshaw, S. M. Acute kidney injury-epidemiology, outcomes and economics. Nat. Rev. Nephrol. 10, 193–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Lea, J. P., McClellan, W. M., Melcher, C., Gladstone, E. & Hostetter, T. CKD risk factors reported by primary care physicians: do guidelines make a difference? Am. J. Kidney Dis. 47, 72–77 (2006).

    Article  PubMed  Google Scholar 

  132. Boulware, L. E., Troll, M. U., Jaar, B. G., Myers, D. I. & Powe, N. R. Identification and referral of patients with progressive CKD: a national study. Am. J. Kidney Dis. 48, 192–204 (2006).

    Article  PubMed  Google Scholar 

  133. Charles, R. F. et al. Clinical testing patterns and cost implications of variation in the evaluation of CKD among US physicians. Am. J. Kidney Dis. 54, 227–237 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fox, C. H., Brooks, A., Zayas, L. E., McClellan, W. & Murray, B. Primary care physicians' knowledge and practice patterns in the treatment of chronic kidney disease: an Upstate New York Practice-based Research Network (UNYNET) study. J. Am. Board Fam. Med. 19, 54–61 (2006).

    Article  PubMed  Google Scholar 

  135. Allen, A. S. et al. Primary Care Management of Chronic Kidney Disease. J. Gen. Intern. Med. 26, 386–392 (2011).

    Article  PubMed  Google Scholar 

  136. Razavian, M. et al. Cardiovascular risk management in chronic kidney disease in general practice (the AusHEART study). Nephrol. Dial. Transplant. 27, 1396–1402 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Winkelmayer, W. C. et al. Underuse of ACE inhibitors and angiotensin II receptor blockers in elderly patients with diabetes. Am. J. Kidney Dis. 46, 1080–1087 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Minutolo, R. et al. Management of hypertension in patients with CKD: Differences between primary and tertiary care settings. Am. J. Kidney Dis. 46, 18–25 (2005).

    Article  PubMed  Google Scholar 

  139. Ravera, M. et al. CKD awareness and blood pressure control in the primary care hypertensive population. Am. J. Kidney Dis. 57, 71–77 (2011).

    Article  PubMed  Google Scholar 

  140. Ravera, M. et al. Chronic kidney disease and cardiovascular risk in hypertensive type 2 diabetics: a primary care perspective. Nephrol. Dial Transplant. 24, 1528–1533 (2009).

    Article  PubMed  Google Scholar 

  141. Israni, R. K., Shea, J. A., Joffe, M. M. & Feldman, H. I. Physician characteristics and knowledge of CKD management. Am. J. Kidney Dis. 54, 238–247 (2009).

    Article  PubMed  Google Scholar 

  142. Black, C. et al. Early referral strategies for management of people with markers of renal disease: a systematic review of the evidence of clinical effectiveness, cost-effectiveness and economic analysis. Health Technol. Assess. 14, 1–184 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Crinson, I., Gallagher, H., Thomas, N. & de Lusignan, S. How ready is general practice to improve quality in chronic kidney disease? A diagnostic analysis. Br. J. Gen. Pract. 60, 403–409 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jain, P., Calvert, M., Cockwell, P. & McManus, R. J. The need for improved identification and accurate classification of stages 3–5 chronic kidney disease in primary care: retrospective cohort study. PLoS ONE 9, e100831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stevens, P. E., Levin, A. & Global, K. D. I. Evaluation and management of chronic kidney disease: synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline. Ann. Intern. Med. 158, 825–830 (2013).

    Article  PubMed  Google Scholar 

  146. Narva, A. S. Reducing the burden of chronic kidney disease among American Indians. Adv. Chronic Kidney Dis. 15, 168–173 (2008).

    Article  PubMed  Google Scholar 

  147. Narva, A. S. & Sequist, T. D. Reducing health disparities in American Indians with chronic kidney disease. Semin. Nephrol. 30, 19–25 (2010).

    Article  PubMed  Google Scholar 

  148. Sequist, T. D., Cullen, T. & Acton, K. J. Indian health service innovations have helped reduce health disparities affecting american Indian and alaska native people. Health Aff. (Millwood) 30, 1965–1973 (2011).

    Article  Google Scholar 

  149. Patel, T. G., Pogach, L. M. & Barth, R. H. CKD screening and management in the Veterans Health Administration: the impact of system organization and an innovative electronic record. Am. J. Kidney Dis. 53 (Suppl. 3), S78–S85 (2009).

    Article  PubMed  Google Scholar 

  150. Lee, B. et al. Effects of proactive population-based nephrologist oversight on progression of chronic kidney disease: a retrospective control analysis. BMC Health Serv. Res. 12, 252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rutkowski, M. et al. Implementing KDOQI CKD Definition and Staging Guidelines in Southern California Kaiser Permanente. Am. J. Kidney Dis. 53 (Suppl. 3), S86–S99 (2009).

    Article  PubMed  Google Scholar 

  152. Stevens, P. E. et al. Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 72, 92–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Rayner, H. C. et al. Does community-wide chronic kidney disease management improve patient outcomes? Nephrol. Dial. Transplant. 29, 644–649 (2014).

    Article  PubMed  Google Scholar 

  154. Richards, N. et al. Primary care-based disease management of chronic kidney disease (CKD), based on estimated glomerular filtration rate (eGFR) reporting, improves patient outcomes. Nephrol. Dial. Transplant. 23, 549–555 (2008).

    Article  PubMed  Google Scholar 

  155. Gaede, P., Lund-Andersen, H., Parving, H. H. & Paedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Hoy, W. E., Baker, P. R., Kelly, A. M. & Wang, Z. Reducing premature death and renal failure in Australian aboriginals. A community-based cardiovascular and renal protective programme. Med. J. Aust. 172, 473–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Hirsch, G., Homer, J., Evans, E. & Zielinski, A. A system dynamics model for planning cardiovascular disease interventions. Am. J. Public Health 100, 616–622 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Homer, J. B. & Hirsch, G. B. System dynamics modeling for public health: background and opportunities. Am. J. Public Health 96, 452–458 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ness, R. B., Koopman, J. S. & Roberts, M. S. From the American College of Epidemiology Annual Meeting 2006—causal system modeling in chronic disease epidemiology: a proposal. Ann. Epidemiol. 17, 564–568 (2007).

    Article  PubMed  Google Scholar 

  160. Zhou, H. et al. A computer simulation model of diabetes progression, quality of life, and cost. Diabetes Care 28, 2856–2863 (2005).

    Article  PubMed  Google Scholar 

  161. Hallan, S. I. et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J. Am. Soc. Nephrol. 17, 2275–2284 (2006).

    Article  PubMed  Google Scholar 

  162. Jesky, M., Lambert, A., Burden, A. C. & Cockwell, P. The impact of chronic kidney disease and cardiovascular comorbidity on mortality in a multiethnic population: a retrospective cohort study. BMJ Open 3, e003458 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fassett, R. G. et al. Biomarkers in chronic kidney disease: a review. Kidney Int 80, 806–821 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Shari Ling and Dr Kimberly Smith (Centers for Medicare and Medicaid Services, Baltimore, MD, USA) for their useful comments on early versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

O.J.W., D.J.O., and J.R. wrote the article. All authors researched the data for the article, provided substantial contributions to discussions of its content, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Donal J. O'Donoghue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wouters, O., O'Donoghue, D., Ritchie, J. et al. Early chronic kidney disease: diagnosis, management and models of care. Nat Rev Nephrol 11, 491–502 (2015). https://doi.org/10.1038/nrneph.2015.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.85

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing