Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog

Key Points

  • Kidney fibrosis, the histological manifestation of functional decline in the kidney, is a reactive process that develops in response to excessive epithelial injury and inflammation

  • In fibrosis, epithelial cells and their vascular capillary bed are lost, while activated myofibroblasts, matrix and inflammatory cells accumulate

  • Tissue injury causes activation of developmental pathways, and several reports have shown that fibrosis is associated with increased expression and activity of Notch, Wnt and Hedgehog (Hh) signalling

  • Although activation of these pathways might be important for regeneration of the damaged organ, excessive stimulation contributes to fibrosis development

  • Notch and Wnt signalling have been shown to have a role in epithelial dedifferentiation; Wnt and Hh signalling can induce myofibroblast transformation and proliferation

  • Decreasing the activity of Notch, Wnt, or Hh signalling could potentially be a new therapeutic strategy to ameliorate the development of chronic kidney disease

Abstract

Kidney fibrosis is a common histological manifestation of functional decline in the kidney. Fibrosis is a reactive process that develops in response to excessive epithelial injury and inflammation, leading to myofibroblast activation and an accumulation of extracellular matrix. Here, we describe how three key developmental signalling pathways — Notch, Wnt and Hedgehog (Hh) — are reactivated in response to kidney injury and contribute to the fibrotic response. Although transient activation of these pathways is needed for repair of injured tissue, their sustained activation is thought to promote fibrosis. Excessive Wnt and Notch expression prohibit epithelial differentiation, whereas increased Wnt and Hh expression induce fibroblast proliferation and myofibroblastic transdifferentiation. Notch, Wnt and Hh are fundamentally different signalling pathways, but their choreographed activation seems to be just as important for fibrosis as it is for embryonic kidney development. Decreasing the activity of Notch, Wnt or Hh signalling could potentially provide a new therapeutic strategy to ameliorate the development of fibrosis in chronic kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of kidney fibrosis.
Figure 2: Notch signalling in renal fibrosis.
Figure 3: Dysregulation of Wnt signalling leads to the development of renal fibrosis.
Figure 4: Hedgehog (Hh) signalling and renal fibrosis.

Similar content being viewed by others

References

  1. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    PubMed  Google Scholar 

  2. Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Tonelli, M. et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    Article  PubMed  Google Scholar 

  4. Reidy, K., Kang, H. M., Hostetter, T. & Susztak, K. Molecular mechanisms of diabetic kidney disease. J. Clin. Invest. 124, 2333–2340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 124, 2299–2306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaissling, B., Lehir, M. & Kriz, W. Renal epithelial injury and fibrosis. Biochim. Biophys. Acta 1832, 931–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Grgic, I., Duffield, J. S. & Humphreys, B. D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol. 27, 183–193 (2012).

    Article  PubMed  Google Scholar 

  9. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woroniecka, K. I. et al. Transcriptome analysis of human diabetic kidney disease. Diabetes 60, 2354–2369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Susztak, K., Raff, A. C., Schiffer, M. & Bottinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55, 225–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Huber, T. B. et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy 8, 1009–1031 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lieberthal, W. & Levine, J. S. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am. J. Physiol. 271, F477–F488 (1996).

    CAS  PubMed  Google Scholar 

  14. Ueda, N., Kaushal, G. P. & Shah, S. V. Recent advances in understanding mechanisms of renal tubular injury. Adv. Ren. Replace. Ther. 4, 17–24 (1997).

    CAS  PubMed  Google Scholar 

  15. Lieberthal, W., Koh, J. S. & Levine, J. S. Necrosis and apoptosis in acute renal failure. Semin. Nephrol. 18, 505–518 (1998).

    CAS  PubMed  Google Scholar 

  16. Petermann, A. & Floege, J. Podocyte damage resulting in podocyturia: a potential diagnostic marker to assess glomerular disease activity. Nephron Clin. Pract. 106, c61–c66 (2007).

    Article  PubMed  Google Scholar 

  17. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hakroush, S. et al. Extensive podocyte loss triggers a rapid parietal epithelial cell response. J. Am. Soc. Nephrol. 25, 927–938 (2014).

    Article  PubMed  Google Scholar 

  19. Eng, D. G. et al. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 88, 999–1012 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. J. Am. Soc. Nephrol. 24, 268–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wiggins, J. E. et al. Podocyte hypertrophy, 'adaptation', and 'decompensation' associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J. Am. Soc. Nephrol. 16, 2953–2966 (2005).

    Article  PubMed  Google Scholar 

  25. Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf, G., Chen, S. & Ziyadeh, F. N. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54, 1626–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Dimke, H. et al. Tubulovascular cross-talk by vascular endothelial growth factor a maintains peritubular microvasculature in kidney. J. Am. Soc. Nephrol. 26, 1027–1038 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, P. & Leibovich, S. J. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 15, 599–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gu, L. et al. Deletion of podocyte STAT3 mitigates the entire spectrum of HIV-1-associated nephropathy. AIDS 27, 1091–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Dai, Y. et al. Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney Int. 84, 950–961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, D., Singla, S. K., Puri, V. & Puri, S. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice. PLoS ONE 10, e115947 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Okabe, C. et al. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy. Am. J. Physiol. Renal Physiol. 305, F155–F163 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Yukawa, K. et al. STAT6 deficiency inhibits tubulointerstitial fibrosis in obstructive nephropathy. Int. J. Mol. Med. 15, 225–230 (2005).

    CAS  PubMed  Google Scholar 

  36. Friedman, S. L., Sheppard, D., Duffield, J. S. & Violette, S. Therapy for fibrotic diseases: nearing the starting line. Sci. Transl. Med. 5, 167sr161 (2013).

    Article  CAS  Google Scholar 

  37. Meran, S. & Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 92, 158–167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu, B. & Phan, S. H. Myofibroblasts. Curr. Opin. Rheumatol. 25, 71–77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kendall, R. T. & Feghali-Bostwick, C. A. Fibroblasts in fibrosis: novel roles and mediators. Front. Pharmacol. 5, 123 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 229, 298–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wight, T. N. & Potter-Perigo, S. The extracellular matrix: an active or passive player in fibrosis? Am. J. Physiol. Gastrointest. Liver Physiol. 301, G950–G955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Olsen, A. L. et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G110–G118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Urban, M. L., Manenti, L. & Vaglio, A. Fibrosis — a common pathway to organ injury and failure. N. Engl. J. Med. 373, 95–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lavoz, C. et al. Angiotensin II contributes to renal fibrosis independently of Notch pathway activation. PLoS ONE 7, e40490 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boor, P. & Floege, J. Chronic kidney disease growth factors in renal fibrosis. Clin. Exp. Pharmacol. Physiol. 38, 441–450 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Chuang, P. Y., Menon, M. C. & He, J. C. Molecular targets for treatment of kidney fibrosis. J. Mol. Med. (Berl.) 91, 549–559 (2013).

    Article  CAS  Google Scholar 

  48. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lai, E. C. Notch signaling: control of cell communication and cell fate. Development 131, 965–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Ilagan, M. X., Lim, S., Fulbright, M., Piwnica-Worms, D. & Kopan, R. Real-time imaging of notch activation with a luciferase complementation-based reporter. Sci. Signal. 4, rs7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sirin, Y. & Susztak, K. Notch in the kidney: development and disease. J. Pathol. 226, 394–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Semin. Cell Dev. Biol. 23, 450–457 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng, H. T. et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development 134, 801–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Fujimura, S., Jiang, Q., Kobayashi, C. & Nishinakamura, R. Notch2 activation in the embryonic kidney depletes nephron progenitors. J. Am. Soc. Nephrol. 21, 803–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Djudjaj, S. et al. Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidney injury. J. Pathol. 228, 286–299 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Sharma, S., Sirin, Y. & Susztak, K. The story of Notch and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 56–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carulli, A. J. et al. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev. Biol. 402, 98–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Pleniceanu, O., Harari-Steinberg, O. & Dekel, B. Concise review: kidney stem/progenitor cells: differentiate, sort out, or reprogram? Stem Cells 28, 1649–1660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kumar, S. et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 12, 1325–1338 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Reginensi, A. et al. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum. Mol. Genet. 20, 1143–1153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kang, H. M. et al. Sox9-positive progenitor cells play a key role in renal tubule epithelial regeneration in mice. Cell Rep. 14, 861–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gomez, R. A., Belyea, B., Medrano, S., Pentz, E. S. & Sequeira-Lopez, M. L. Fate and plasticity of renin precursors in development and disease. Pediatr. Nephrol. 29, 721–726 (2014).

    Article  PubMed  Google Scholar 

  66. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, J., Chen, J. K., Conway, E. M. & Harris, R. C. Survivin mediates renal proximal tubule recovery from AKI. J. Am. Soc. Nephrol. 24, 2023–2033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, R., Zhou, Q., Veeraragoo, P., Yu, H. & Xiao, Z. Notch2/Hes-1 pathway plays an important role in renal ischemia and reperfusion injury-associated inflammation and apoptosis and the γ-secretase inhibitor DAPT has a nephroprotective effect. Ren. Fail. 33, 207–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Sorensen-Zender, I. et al. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. Am. J. Physiol. Renal Physiol. 306, F907–F915 (2014).

    Article  PubMed  CAS  Google Scholar 

  70. Murea, M. et al. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int. 78, 514–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Z., Li, Y., Kong, D. & Sarkar, F. H. The role of Notch signaling pathway in epithelial–mesenchymal transition (EMT) during development and tumor aggressiveness. Curr. Drug Targets 11, 745–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saad, S., Stanners, S. R., Yong, R., Tang, O. & Pollock, C. A. Notch mediated epithelial to mesenchymal transformation is associated with increased expression of the Snail transcription factor. Int. J. Biochem. Cell Biol. 42, 1115–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lasagni, L. et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 28, 1674–1685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen, L. & Al-Awqati, Q. Segmental expression of Notch and Hairy genes in nephrogenesis. Am. J. Physiol. Renal Physiol. 288, F939–F952 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Barak, H., Surendran, K. & Boyle, S. C. The role of Notch signaling in kidney development and disease. Adv. Exp. Med. Biol. 727, 99–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Bielefeld, K. A., Amini-Nik, S. & Alman, B. A. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 70, 2059–2081 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Xiao, Z. et al. The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int. J. Biochem. Cell Biol. 55, 65–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Takebe, N., Harris, P. J., Warren, R. Q. & Ivy, S. P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8, 97–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Hayward, P., Kalmar, T. & Arias, A. M. Wnt/Notch signalling and information processing during development. Development 135, 411–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Niranjan, T., Murea, M. & Susztak, K. The pathogenic role of Notch activation in podocytes. Nephron Exp. Nephrol. 111, e73–e79 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, C. L. et al. Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy. Diabetes 59, 1915–1925 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tanaka, E. et al. Notch2 activation ameliorates nephrosis. Nat. Commun. 5, 3296 (2014).

    Article  PubMed  CAS  Google Scholar 

  87. Sweetwyne, M. T. et al. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes 64, 4099–4111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. El Machhour, F., Keuylian, Z., Kavvadas, P., Dussaule, J. C. & Chatziantoniou, C. Activation of Notch3 in glomeruli promotes the development of rapidly progressive renal disease. J. Am. Soc. Nephrol. 26, 1561–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Nusse, R. & Varmus, H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 31, 2670–2684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sokol, S. Y. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development. Semin. Cell Dev. Biol. 42, 78–85 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kahn, M. Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513–532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Holland, J. D., Klaus, A., Garratt, A. N. & Birchmeier, W. Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254–264 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Guo, Y., Xiao, L., Sun, L. & Liu, F. Wnt/β-catenin signaling: a promising new target for fibrosis diseases. Physiol. Res. 61, 337–346 (2012).

    CAS  PubMed  Google Scholar 

  94. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A. WNT and β-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Boyle, S. C., Kim, M., Valerius, M. T., McMahon, A. P. & Kopan, R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development 138, 4245–4254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenberg, S. L., Chen, S., McLaughlin, N. & El-Dahr, S. S. Regulation of kidney development by histone deacetylases. Pediatr. Nephrol. 26, 1445–1452 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kawakami, T., Ren, S. & Duffield, J. S. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J. Pathol. 229, 221–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xiao, L. et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015040449 (2015).

  103. Terada, Y. et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol. 14, 1223–1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Zhou, D. et al. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int. 82, 537–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, D., Tan, R. J., Zhou, L., Li, Y. & Liu, Y. Kidney tubular β-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal communication. Sci. Rep. 3, 1878 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Satoh, W., Matsuyama, M., Takemura, H., Aizawa, S. & Shimono, A. Sfrp1, Sfrp2, and Sfrp5 regulate the Wnt/β-catenin and the planar cell polarity pathways during early trunk formation in mouse. Genesis 46, 92–103 (2008).

    Article  PubMed  Google Scholar 

  108. Matsuyama, M., Nomori, A., Nakakuni, K., Shimono, A. & Fukushima, M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J. Biol. Chem. 289, 31526–31533 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xue, H. et al. Disruption of the Dapper3 gene aggravates ureteral obstruction-mediated renal fibrosis by amplifying Wnt/β-catenin signaling. J. Biol. Chem. 288, 15006–15014 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5, 100–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Palmer, H. G. et al. Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J. Cell Biol. 154, 369–387 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhou, L. et al. Multiple genes of the renin–angiotensin system are novel targets of Wnt/β-catenin signaling. J. Am. Soc. Nephrol. 26, 107–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. DiRocco, D. P., Kobayashi, A., Taketo, M. M., McMahon, A. P. & Humphreys, B. D. Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J. Am. Soc. Nephrol. 24, 1399–1412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, P., Cai, Y., Soofi, A. & Dressler, G. R. Activation of Wnt11 by transforming growth factor-β drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells. J. Biol. Chem. 287, 21290–21302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kato, H. et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 286, 26003–26015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dai, C. et al. Wnt/β-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. 20, 1997–2008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cain, J. E. & Rosenblum, N. D. Control of mammalian kidney development by the Hedgehog signaling pathway. Pediatr. Nephrol. 26, 1365–1371 (2011).

    Article  PubMed  Google Scholar 

  118. Mao, J., Kim, B. M., Rajurkar, M., Shivdasani, R. A. & McMahon, A. P. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development 137, 1721–1729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yao, E. & Chuang, P. T. Hedgehog signaling: from basic research to clinical applications. J. Formos. Med. Assoc. 114, 569–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Abidi, A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J. Pharmacol. 46, 3–12 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Katoh, Y. & Katoh, M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr. Mol. Med. 9, 873–886 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Bowers, M. et al. Limb anterior–posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3. Dev. Biol. 370, 110–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Attanasio, M. et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39, 1018–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Li, B. et al. Increased hedgehog signaling in postnatal kidney results in aberrant activation of nephron developmental programs. Hum. Mol. Genet. 20, 4155–4166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fabian, S. L. et al. Hedgehog–Gli pathway activation during kidney fibrosis. Am. J. Pathol. 180, 1441–1453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, D. et al. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol. 25, 2187–2200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ding, H. et al. Sonic hedgehog signaling mediates epithelial–mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol. 23, 801–813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kramann, R. et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Invest. 125, 2935–2951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Schneider, J., Arraf, A. A., Grinstein, M., Yelin, R. & Schultheiss, T. M. Wnt signaling orients the proximal–distal axis of chick kidney nephrons. Development 142, 2686–2695 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Haegebarth, A. & Clevers, H. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am. J. Pathol. 174, 715–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Krausova, M. & Korinek, V. Wnt signaling in adult intestinal stem cells and cancer. Cell. Signal. 26, 570–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Vooijs, M., Liu, Z. & Kopan, R. Notch: architect, landscaper, and guardian of the intestine. Gastroenterology 141, 448–459 (2011).

    Article  PubMed  Google Scholar 

  135. van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Cao, Z. et al. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat. Med. 22, 154–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Kobayashi, T. et al. Expression and function of the Delta-1/Notch-2/Hes-1 pathway during experimental acute kidney injury. Kidney Int. 73, 1240–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Gupta, S. et al. Effect of Notch activation on the regenerative response to acute renal failure. Am. J. Physiol. Renal Physiol. 298, F209–F215 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Walsh, D. W. et al. Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochim. Biophys. Acta 1782, 10–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Surendran, K., McCaul, S. P. & Simon, T. C. A role for Wnt-4 in renal fibrosis. Am. J. Physiol. Renal Physiol. 282, F431–F441 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Kuma, A. et al. Role of WNT10A-expressing kidney fibroblasts in acute interstitial nephritis. PLoS ONE 9, e103240 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Saito, S., Tampe, B., Muller, G. A. & Zeisberg, M. Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney. Fibrogenesis Tissue Repair 8, 6 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Kim, M. K. et al. The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int. J. Clin. Exp. Pathol. 6, 1747–1758 (2013).

    PubMed  PubMed Central  Google Scholar 

  145. Wang, D., Dai, C., Li, Y. & Liu, Y. Canonical Wnt/β-catenin signaling mediates transforming growth factor-β1-driven podocyte injury and proteinuria. Kidney Int. 80, 1159–1169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jiang, L. et al. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria. J. Biol. Chem. 288, 23368–23379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ren, S. et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc. Natl Acad. Sci. USA 110, 1440–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hao, S. et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J. Am. Soc. Nephrol. 22, 1642–1653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. He, W., Kang, Y. S., Dai, C. & Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Surendran, K., Schiavi, S. & Hruska, K. A. Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J. Am. Soc. Nephrol. 16, 2373–2384 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants R01 DK076077 and DK087635 to K.S. and by grants of the Innovative Medizinische Forschung and Dr. Werner Jackstädt-Stiftung to M.E. and H.P. We apologize to all colleagues whose important findings could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

M.E., S.H. and G.R. researched data for the article. M.E. and K.S. discussed the article's content, after which M.E., S.H., G.R. and K.S. wrote the manuscript. H.P. reviewed the manuscript before submission.

Corresponding author

Correspondence to Katalin Susztak.

Ethics declarations

Competing interests

M.E. has been employed by Boehringer Ingelheim since January 2016. The Susztak laboratory has received research support from Boehringer Ingelheim, Biogen and Eli Lilly & Company.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edeling, M., Ragi, G., Huang, S. et al. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12, 426–439 (2016). https://doi.org/10.1038/nrneph.2016.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing