Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The importance of non-HLA antibodies in transplantation

Key Points

  • Humoral immunity to self-antigens expressed on the allograft is associated with rejection and reduced long-term renal allograft survival

  • Autoantibodies can mediate graft damage via complement-dependent and complement-independent pathways.

  • Compelling experimental data suggest that autoantibodies are generated through multiple mechanisms, including presentation of donor-derived extracellular vesicles and apoptotic bodies by host antigen presenting cells

  • IL-17 and type 17 T helper (TH17) cell pathways might have a central role in autoantibody production in the setting of allotransplantation through development of tertiary lymphoid tissue (TLT)

  • TLT promotes B-cell survival and immunoglobulin isotype class switching

  • More investigation is required to elucidate the pathogenesis of autoantibodies and to develop targeted therapeutic strategies to prevent acute and chronic antibody-mediated rejection

Abstract

The development of post-transplantation antibodies against non-HLA autoantigens is associated with rejection and decreased long-term graft survival. Although our knowledge of non-HLA antibodies is incomplete, compelling experimental and clinical findings demonstrate that antibodies directed against autoantigens such as angiotensin type 1 receptor, perlecan and collagen, contribute to the process of antibody-mediated acute and chronic rejection. The mechanisms that underlie the production of autoantibodies in the setting of organ transplantation is an important area of ongoing investigation. Ischaemia–reperfusion injury, surgical trauma and/or alloimmune responses can result in the release of organ-derived autoantigens (such as soluble antigens, extracellular vesicles or apoptotic bodies) that are presented to B cells in the context of the transplant recipient's antigen presenting cells and stimulate autoantibody production. Type 17 T helper cells orchestrate autoantibody production by supporting the proliferation and maturation of autoreactive B cells within ectopic tertiary lymphoid tissue. Conversely, autoantibody-mediated graft damage can trigger alloimmunity and the development of donor-specific HLA antibodies that can act in synergy to promote allograft rejection. Identification of the immunologic phenotypes of transplant recipients at risk of non-HLA antibody-mediated rejection, and the development of targeted therapies to treat such rejection, are sorely needed to improve both graft and patient survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allograft injury and potential mechanisms of autoantibody production.
Figure 2: Autoantigen presentation by extracelluar vesicles.
Figure 3: Effector mechanisms of T<cp:Subscript>H<cp:>17-cell-mediated autoantibody production.

Similar content being viewed by others

References

  1. Stegall, M. D. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 11, 2405–2413 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Amico, P. et al. Clinical relevance of pretransplant donor-specific HLA antibodies detected by single-antigen flow-beads. Transplantation 87, 1681–1688 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Gloor, J. M. et al. Baseline donor-specific antibody levels and outcomes in positive crossmatch kidney transplantation. Am. J. Transplant. 10, 582–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Everly, M. J. Incidence and hazards of alloantibodies in renal transplantation. Clin. Transpl. 313–317 (2013).

  5. Wiebe, C. et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am. J. Transplant. 12, 1157–1167 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Lefaucheur, C. et al. Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. J. Am. Soc. Nephrol. 21, 1398–1406 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gourishankar, S. et al. Pathological and clinical characterization of the 'troubled transplant': data from the DeKAF study. Am. J. Transplant. 10, 324–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grafft, C. A. et al. Antibody-mediated rejection following transplantation from an HLA-identical sibling. Nephrol. Dial. Transplant. 25, 307–310 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Kalil, J. et al. Humoral rejection in two HLA identical living related donor kidney transplants. Transplant. Proc. 21, 711–713 (1989).

    CAS  PubMed  Google Scholar 

  10. Montoliu, J. et al. Delayed hyperacute rejection in recipients of kidney transplants from HLA identical sibling donors. Am. J. Med. 67, 590–596 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Terasaki, P. I. Deduction of the fraction of immunologic and non-immunologic failure in cadaver donor transplants. Clin. Transpl. 449–452 (2003).

  12. Opelz, G. & Collaborative Transplant Study. Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet 365, 1570–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Bordron, A. et al. Functional heterogeneity of anti-endothelial cell antibodies. Clin. Exp. Immunol. 124, 492–501 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zou, Y., Stastny, P., Susal, C., Dohler, B. & Opelz, G. Antibodies against MICA antigens and kidney-transplant rejection. N. Engl. J. Med. 357, 1293–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Brasile, L., Rodman, E., Shield, C. F. III, Clarke, J. & Cerilli, J. The association of antivascular endothelial cell antibody with hyperacute rejection: a case report. Surgery 99, 637–640 (1986).

    CAS  PubMed  Google Scholar 

  16. Harmer, A. W., Haskard, D., Koffman, C. G. & Welsh, K. I. Novel antibodies associated with unexplained loss of renal allografts. Transpl. Int. 3, 66–69 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Jackson, A. M., Kuperman, M. B. & Montgomery, R. A. Multiple hyperacute rejections in the absence of detectable complement activation in a patient with endothelial cell reactive antibody. Am. J. Transplant. 12, 1643–1649 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Jordan, S. C., Yap, H. K., Sakai, R. S., Alfonso, P. & Fitchman, M. Hyperacute allograft rejection mediated by anti-vascular endothelial cell antibodies with a negative monocyte crossmatch. Transplantation 46, 585–587 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Niikura, T. et al. Probable C4d-negative accelerated acute antibody-mediated rejection due to non-HLA antibodies. Nephrology (Carlton) 20 (Suppl. 2), 75–78 (2015).

    Article  CAS  Google Scholar 

  20. Sumitran-Karuppan, S., Tyden, G., Reinholt, F., Berg, U. & Moller, E. Hyperacute rejections of two consecutive renal allografts and early loss of the third transplant caused by non-HLA antibodies specific for endothelial cells. Transpl. Immunol. 5, 321–327 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Perrey, C., Brenchley, P. E., Johnson, R. W. & Martin, S. An association between antibodies specific for endothelial cells and renal transplant failure. Transpl. Immunol. 6, 101–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Le Bas-Bernardet, S. et al. Non-HLA-type endothelial cell reactive alloantibodies in pre-transplant sera of kidney recipients trigger apoptosis. Am. J. Transplant. 3, 167–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Q. et al. HLA and MICA: targets of antibody-mediated rejection in heart transplantation. Transplantation 91, 1153–1158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Breimer, M. E. et al. Multicenter evaluation of a novel endothelial cell crossmatch test in kidney transplantation. Transplantation 87, 549–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Daniel, V. et al. Clinical relevance of preformed IgG and IgM antibodies against donor endothelial progenitor cells in recipients of living donor kidney grafts. Clin. Transplant. 30, 124–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sun, Q. et al. Detectable circulating antiendothelial cell antibodies in renal allograft recipients with C4d-positive acute rejection: a report of three cases. Transplantation 79, 1759–1762 (2005).

    Article  PubMed  Google Scholar 

  27. Mahesh, B. et al. Autoantibodies to vimentin cause accelerated rejection of cardiac allografts. Am. J. Pathol. 170, 1415–1427 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahesh, B. et al. Autoimmunity to vimentin potentiates graft vasculopathy in murine cardiac allografts. Transplantation 90, 4–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Fuss, A. et al. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies. Nephrology (Carlton) 20, 467–473 (2015).

    Article  CAS  Google Scholar 

  30. Reinsmoen, N. L. et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 90, 1473–1477 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Jackson, A. M., Lucas, D. P., Melancon, J. K. & Desai, N. M. Clinical relevance and IgG subclass determination of non-HLA antibodies identified using endothelial cell precursors isolated from donor blood. Transplantation 92, 54–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Pearl, M. H. et al. Accelerated rejection, thrombosis, and graft failure with angiotensin II type 1 receptor antibodies. Pediatr. Nephrol. 30, 1371–1374 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dragun, D. et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N. Engl. J. Med. 352, 558–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Li, L. et al. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and “antibodyome” measures. Proc. Natl Acad. Sci. USA 106, 4148–4153 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sigdel, T. K. et al. Non-HLA antibodies to immunogenic epitopes predict the evolution of chronic renal allograft injury. J. Am. Soc. Nephrol. 23, 750–763 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Jackson, A. M. et al. Endothelial cell antibodies associated with novel targets and increased rejection. J. Am. Soc. Nephrol. 26, 1161–1171 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Seva Pessoa, B. et al. Key developments in renin-angiotensin-aldosterone system inhibition. Nat. Rev. Nephrol. 9, 26–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Xia, Y. & Kellems, R. E. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ. Res. 113, 78–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wallukat, G. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest. 103, 945–952 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giral, M. et al. Pretransplant sensitization against angiotensin II type 1 receptor is a risk factor for acute rejection and graft loss. Am. J. Transplant. 13, 2567–2576 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. In, J. W. et al. Anti-angiotensin type 1 receptor antibodies associated with antibody-mediated rejection in patients without preformed HLA-donor-specific antibody. Transplant. Proc. 46, 3371–3374 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, J. et al. The clinicopathological relevance of pretransplant anti-angiotensin II type 1 receptor antibodies in renal transplantation. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv375 (2015).

  43. Lee, J. et al. Clinical implications of angiotensin II type 1 receptor antibodies in antibody-mediated rejection without detectable donor-specific HLA antibodies after renal transplantation. Transplant. Proc. 47, 649–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Taniguchi, M. et al. Higher risk of kidney graft failure in the presence of anti-angiotensin II type-1 receptor antibodies. Am. J. Transplant. 13, 2577–2589 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Hesemann, L. E., Subramanian, V., Mohanakumar, T. & Dharnidharka, V. R. De novo development of antibodies to kidney-associated self-antigens angiotensin II receptor type I, collagen IV, and fibronectin occurs at early time points after kidney transplantation in children. Pediatr. Transplant. 19, 499–503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Banasik, M. et al. Non-HLA antibodies: angiotensin II type 1 receptor (anti-AT1R) and endothelin-1 type A receptor (anti-ETAR) are associated with renal allograft injury and graft loss. Transplant. Proc. 46, 2618–2621 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Cravedi, P., Kopp, J. B. & Remuzzi, G. Recent progress in the pathophysiology and treatment of FSGS recurrence. Am. J. Transplant. 13, 266–274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abbott, K. C. et al. Graft loss due to recurrent focal segmental glomerulosclerosis in renal transplant recipients in the United States. Am. J. Kidney Dis. 37, 366–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Vincenti, F. & Ghiggeri, G. M. New insights into the pathogenesis and the therapy of recurrent focal glomerulosclerosis. Am. J. Transplant. 5, 1179–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Choy, B. Y., Chan, T. M. & Lai, K. N. Recurrent glomerulonephritis after kidney transplantation. Am. J. Transplant. 6, 2535–2542 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Hoffmann, S., Podlich, D., Hahnel, B., Kriz, W. & Gretz, N. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J. Am. Soc. Nephrol. 15, 1475–1487 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Alachkar, N., Gupta, G. & Montgomery, R. A. Angiotensin antibodies and focal segmental glomerulosclerosis. N. Engl. J. Med. 368, 971–973 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Mujtaba, M. A. et al. Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis recurrence. Clin. Transplant. 29, 606–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Delville, M. et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl Med. 6, 256ra136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hiemann, N. E. et al. Non-HLA antibodies targeting vascular receptors enhance alloimmune response and microvasculopathy after heart transplantation. Transplantation 94, 919–924 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Reinsmoen, N. L. et al. Increased negative impact of donor HLA-specific together with non-HLA-specific antibodies on graft outcome. Transplantation 97, 595–601 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Urban, M. et al. The impact of angiotensin II type 1 receptor antibodies on post-heart transplantation outcome in Heart Mate II bridged recipients. Interact. Cardiovasc. Thorac. Surg. 22, 292–297 (2016).

    Article  PubMed  Google Scholar 

  58. Fillion, D. et al. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode. J. Biol. Chem. 288, 8187–8197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Unal, H., Jagannathan, R., Bhat, M. B. & Karnik, S. S. Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J. Biol. Chem. 285, 16341–16350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Unal, H. et al. Long range effect of mutations on specific conformational changes in the extracellular loop 2 of angiotensin II type 1 receptor. J. Biol. Chem. 288, 540–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, W. et al. Stimulatory activity of anti-peptide antibodies against the second extracellular loop of human M2 muscarinic receptors. Chin. Med. J. (Engl.) 113, 867–871 (2000).

    CAS  Google Scholar 

  62. Lebesgue, D. et al. An agonist-like monoclonal antibody against the human β2-adrenoceptor. Eur. J. Pharmacol. 348, 123–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Unal, H., Jagannathan, R. & Karnik, S. S. Mechanism of GPCR-directed autoantibodies in diseases. Adv. Exp. Med. Biol. 749, 187–199 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, S. et al. Angiotensin type 1 receptor autoantibody from preeclamptic patients induces human fetoplacental vasoconstriction. J. Cell. Physiol. 228, 142–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Lukitsch, I. et al. Renal ischemia and transplantation predispose to vascular constriction mediated by angiotensin II type 1 receptor-activating antibodies. Transplantation 94, 8–13 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Ehrenstein, M. R. & Notley, C. A. The importance of natural IgM: scavenger, protector and regulator. Nat. Rev. Immunol. 10, 778–786 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, M. et al. The role of natural IgM in myocardial ischemia-reperfusion injury. J. Mol. Cell Cardiol. 41, 62–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Iozzo, R. V. & Sanderson, R. D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med. 15, 1013–1031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cailhier, J. F. et al. Caspase-3 activation triggers extracellular cathepsin L release and endorepellin proteolysis. J. Biol. Chem. 283, 27220–27229 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Cardinal, H. et al. Antiperlecan antibodies are novel accelerators of immune-mediated vascular injury. Am. J. Transplant. 13, 861–874 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. O'Riordan, E., Addabbo, F. & Goligorsky, M. S. Urine proteomics—prospects for future diagnostics. Acta Physiol. Hung. 94, 133–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Soulez, M. et al. The perlecan fragment LG3 is a novel regulator of obliterative remodeling associated with allograft vascular rejection. Circ. Res. 110, 94–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Pilon, E. A. et al. The perlecan fragment LG3 regulates homing of mesenchymal stem cells and neointima formation during vascular rejection. Am. J. Transplant. 15, 1205–1218 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Iwata, T. et al. Anti-type V collagen humoral immunity in lung transplant primary graft dysfunction. J. Immunol. 181, 5738–5747 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Yoshida, S. et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well-healed lung transplants. Am. J. Transplant. 6, 724–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Tiriveedhi, V. et al. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection. Clin. Exp. Immunol. 167, 158–168 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burlingham, W. J. et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J. Clin. Invest. 117, 3498–3506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hachem, R. R. et al. Antibodies to K-alpha 1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am. J. Transplant. 12, 2164–2171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tiriveedhi, V. et al. Pre-transplant antibodies to Kalpha1 tubulin and collagen-V in lung transplantation: clinical correlations. J. Heart Lung Transplant. 32, 807–814 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Angaswamy, N. et al. Immune responses to collagen-IV and fibronectin in renal transplant recipients with transplant glomerulopathy. Am. J. Transplant. 14, 685–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Nath, D. S. et al. A role for antibodies to human leukocyte antigens, collagen-V, and K-α1-Tubulin in antibody-mediated rejection and cardiac allograft vasculopathy. Transplantation 91, 1036–1043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Braun, R. K. et al. Transfer of tolerance to collagen type V suppresses T-helper-cell-17 lymphocyte-mediated acute lung transplant rejection. Transplantation 88, 1341–1348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fan, L. et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am. J. Transplant. 11, 911–922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yin, X. T., Zobell, S., Jarosz, J. G. & Stuart, P. M. Anti-IL-17 therapy restricts and reverses late-term corneal allorejection. J. Immunol. 194, 4029–4038 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Basha, H. I. et al. Critical role for IL-17A/F in the immunopathogenesis of obliterative airway disease induced by anti-MHC I antibodies. Transplantation 95, 293–300 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosen, A. & Casciola-Rosen, L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 6, 6–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Bluestone, J. A., Bour-Jordan, H., Cheng, M. & Anderson, M. T cells in the control of organ-specific autoimmunity. J. Clin. Invest. 125, 2250–2260 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11, 88–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Zhai, Y., Petrowsky, H., Hong, J. C., Busuttil, R. W. & Kupiec-Weglinski, J. W. Ischaemia-reperfusion injury in liver transplantation—from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 10, 79–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Methe, H., Zimmer, E., Grimm, C., Nabauer, M. & Koglin, J. Evidence for a role of toll-like receptor 4 in development of chronic allograft rejection after cardiac transplantation. Transplantation 78, 1324–1331 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Stribos, E. G. et al. Renal expression of Toll-like receptor 2 and 4: dynamics in human allograft injury and comparison to rodents. Mol. Immunol. 64, 82–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, J. et al. Toll-like receptor 4 regulates early endothelial activation during ischemic acute kidney injury. Kidney Int. 79, 288–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Kruger, B. et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl Acad. Sci. USA 106, 3390–3395 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tanaka, M. et al. Progression of alloresponse and tissue-specific immunity during graft coronary artery disease. Am. J. Transplant. 5, 1286–1296 (2005).

    Article  PubMed  Google Scholar 

  95. Rose, M. L. Role of anti-vimentin antibodies in allograft rejection. Hum. Immunol. 74, 1459–1462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Suzuki, H. et al. Role of complement activation in obliterative bronchiolitis post-lung transplantation. J. Immunol. 191, 4431–4439 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Carroll, M. C. The complement system in regulation of adaptive immunity. Nat. Immunol. 5, 981–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C. & Fearon, D. T. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Marsh, J. E. et al. The allogeneic T and B cell response is strongly dependent on complement components C3 and C4. Transplantation 72, 1310–1318 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Sheen, J. H. & Heeger, P. S. Effects of complement activation on allograft injury. Curr. Opin. Organ Transplant. 20, 468–475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sayegh, M. H. & Turka, L. A. The role of T-cell costimulatory activation pathways in transplant rejection. N. Engl. J. Med. 338, 1813–1821 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Valujskikh, A., Lantz, O., Celli, S., Matzinger, P. & Heeger, P. S. Cross-primed CD8+ T cells mediate graft rejection via a distinct effector pathway. Nat. Immunol. 3, 844–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Reed, E. F., Tugulea, S. L. & Suciu-Foca, N. Influence of HLA class I and class II antigens on the peripheral T-cell receptor repertoire. Hum. Immunol. 40, 111–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Fangmann, J., Dalchau, R. & Fabre, J. W. Rejection of skin allografts by indirect allorecognition of donor class I major histocompatibility complex peptides. J. Exp. Med. 175, 1521–1529 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Hanvesakul, R. et al. Indirect recognition of T-cell epitopes derived from the α3 and transmembrane domain of HLA-A2. Am. J. Transplant. 7, 1148–1157 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Vella, J. P. et al. Cellular and humoral mechanisms of vascularized allograft rejection induced by indirect recognition of donor MHC allopeptides. Transplantation 67, 1523–1532 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Valujskikh, A., Fedoseyeva, E., Benichou, G. & Heeger, P. S. Development of autoimmunity after skin graft rejection via an indirect alloresponse. Transplantation 73, 1130–1137 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Macdonald, W. A. et al. T cell allorecognition via molecular mimicry. Immunity 31, 897–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Fukami, N. et al. Antibodies to MHC class I induce autoimmunity: role in the pathogenesis of chronic rejection. J. Immunol. 182, 309–318 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Saini, D. et al. Alloimmunity-induced autoimmunity as a potential mechanism in the pathogenesis of chronic rejection of human lung allografts. J. Heart Lung Transplant. 30, 624–631 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Subramanian, V. et al. Immune response to tissue-restricted self-antigens induces airway inflammation and fibrosis following murine lung transplantation. Am. J. Transplant. 14, 2359–2366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Keller, M. R. et al. Epitope analysis of the collagen type V-specific T cell response in lung transplantation reveals an HLA-DRB1*15 bias in both recipient and donor. PLoS ONE 8, e79601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Z. et al. Indirect recognition of donor HLA-DR peptides in organ allograft rejection. J. Clin. Invest. 98, 1150–1157 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pallet, N., Dieude, M., Cailhier, J. & Hebert, M. The molecular legacy of apoptosis in transplantation. Am. J. Transplant. 12, 1378–1384 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Montecalvo, A. et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J. Immunol. 180, 3081–3090 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Peche, H., Heslan, M., Usal, C., Amigorena, S. & Cuturi, M. C. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 76, 1503–1510 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Segura, E. et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106, 216–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Thery, C. et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol. 3, 1156–1162 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Muntasell, A., Berger, A. C. & Roche, P. A. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 26, 4263–4272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nolte-'t Hoen, E. N., Buschow, S. I., Anderton, S. M., Stoorvogel, W. & Wauben, M. H. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113, 1977–1981 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Dieude, M. et al. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci. Transl Med. 7, 318ra200 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Mitsdoerffer, M. et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl Acad. Sci. USA 107, 14292–14297 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Rao, D. A. et al. Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. J. Exp. Med. 205, 3145–3158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gorbacheva, V., Fan, R., Li, X. & Valujskikh, A. Interleukin-17 promotes early allograft inflammation. Am. J. Pathol. 177, 1265–1273 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cheng, J. et al. Ectopic B-cell clusters that infiltrate transplanted human kidneys are clonal. Proc. Natl Acad. Sci. USA 108, 5560–5565 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol. 15, 603–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Thaunat, O. et al. Chronic rejection triggers the development of an aggressive intragraft immune response through recapitulation of lymphoid organogenesis. J. Immunol. 185, 717–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Thaunat, O. et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl Acad. Sci. USA 102, 14723–14728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sato, M. et al. The role of intrapulmonary de novo lymphoid tissue in obliterative bronchiolitis after lung transplantation. J. Immunol. 182, 7307–7316 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Huibers, M. M. et al. The composition of ectopic lymphoid structures suggests involvement of a local immune response in cardiac allograft vasculopathy. J. Heart Lung Transplant. 34, 734–745 (2015).

    Article  PubMed  Google Scholar 

  134. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Rangel-Moreno, J. et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12, 639–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Patakas, A. et al. Th17 effector cells support B cell responses outside of germinal centres. PLoS ONE 7, e49715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Szodoray, P., Jellestad, S., Teague, M. O. & Jonsson, R. Attenuated apoptosis of B cell activating factor-expressing cells in primary Sjogren's syndrome. Lab Invest. 83, 357–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Thaunat, O. et al. A stepwise breakdown of B-cell tolerance occurs within renal allografts during chronic rejection. Kidney Int. 81, 207–219 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Iyer, H. S., Jackson, A. M., Zachary, A. A. & Montgomery, R. A. Transplanting the highly sensitized patient: trials and tribulations. Curr. Opin. Nephrol. Hypertens. 22, 681–688 (2013).

    Article  PubMed  Google Scholar 

  141. Lefaucheur, C. et al. Comparison of combination Plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am. J. Transplant. 9, 1099–1107 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Jordan, S. C., Toyoda, M., Kahwaji, J. & Vo, A. A. Clinical aspects of intravenous immunoglobulin use in solid organ transplant recipients. Am. J. Transplant. 11, 196–202 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Morrow, W. R. et al. Rapid reduction in donor-specific anti-human leukocyte antigen antibodies and reversal of antibody-mediated rejection with bortezomib in pediatric heart transplant patients. Transplantation 93, 319–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Woodle, E. S. et al. Prospective iterative trial of proteasome inhibitor-based desensitization. Am. J. Transplant. 15, 101–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Fan, J. et al. Eculizumab salvage therapy for antibody-mediated rejection in a desensitization-resistant intestinal re-transplant patient. Am. J. Transplant. 15, 1995–2000 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Cornell, L. D., Schinstock, C. A., Gandhi, M. J., Kremers, W. K. & Stegall, M. D. Positive crossmatch kidney transplant recipients treated with eculizumab: outcomes beyond 1 year. Am. J. Transplant. 15, 1293–1302 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Vo, A. A. et al. A phase I/II Trial of the interleukin-6 receptor specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients. Transplantation 99, 2356–2363 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Sarma, N. J. et al. Modulation of immune responses following solid organ transplantation by microRNA. Exp. Mol. Pathol. 93, 378–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu, Z. et al. De novo-developed antibodies to donor MHC antigens lead to dysregulation of microRNAs and induction of MHC class II. J. Immunol. 194, 6133–6143 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Xu, Z. et al. Dysregulated microRNA Expression and chronic lung allograft rejection in recipients with antibodies to donor HLA. Am. J. Transplant. 15, 1933–1947 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sutherland, S. M. et al. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients. Kidney Int. 76, 1277–1283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hagedorn, P. H. et al. Integrative analysis correlates donor transcripts to recipient autoantibodies in primary graft dysfunction after lung transplantation. Immunology 132, 394–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the following grants: NIH RO1AI42819 and W.M. Keck Foundation (awarded to E.F.R).

Author information

Authors and Affiliations

Authors

Contributions

Both authors discussed the content, researched the data, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Elaine F. Reed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Reed, E. The importance of non-HLA antibodies in transplantation. Nat Rev Nephrol 12, 484–495 (2016). https://doi.org/10.1038/nrneph.2016.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing