Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological fluid biomarkers in neurodegenerative parkinsonism

Abstract

Patients with parkinsonian symptoms can present either to primary care physicians or to neurologists. In both contexts, differential diagnosis is problematic, particularly early in the disease when only subtle bradykinesia, rigidity or tremor is present. Adjunctive tests should help substantially to improve the accuracy of early clinical diagnosis. This Review appraises cerebrospinal fluid (CSF), plasma and urine biomarkers that have been studied in the differential diagnosis of neurodegenerative parkinsonism. CSF biomarkers seem to hold the most promise because of their intimacy with the degenerating neurons. Most assays are still in the early stages of development, but CSF measures of α-synuclein (specific for Parkinson disease) and tau fragments (specific for progressive supranuclear palsy) have been refined. Universal approval of these assays will depend on larger clinical trials and establishment of normal ranges. Other blood and CSF biomarkers have shown exceptional specificity and sensitivity when analyzed in combination, although these findings require verification. A host of potential biomarkers have, however, produced disappointing results, either because of poor specificity or low assay reproducibility. Despite such difficulties, improved technology, in conjunction with advances in nosology and pathology, means that biomarkers are poised to enter routine clinical practice to aid the differentiation of parkinsonian disorders.

Key Points

  • Clinical differentiation between parkinsonian disorders can be difficult, if not impossible, in the early disease stages

  • Adjunctive biological markers with high specificity would aid early diagnosis

  • Many biomarkers to date have suffered from poor reproducibility and low specificity

  • Measurements of α-synuclein and tau forms in cerebrospinal fluid seem to be the most promising assays when used in the appropriate clinical context (Parkinson disease versus progressive supranuclear palsy)

  • Diagnostic accuracy might be further improved by combining these assays with other biomarker modalities

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequencies of various causes of parkinsonism.
Figure 2: Pathological lesions used in postmortem diagnosis of neurodegenerative parkinsonism.

Similar content being viewed by others

References

  1. de Rijk, M. C. et al. Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson's disease. J Neurol. Neurosurg. Psychiatry 62, 10–15 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller, D. C., Hafez, K. S., Stewart, A., Montie, J. E. & Wei, J. T. Prostate carcinoma presentation, diagnosis, and staging: an update form the National Cancer Data Base. Cancer 98, 1169–1178 (2003).

    PubMed  Google Scholar 

  3. O'Sullivan, S. S. et al. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131, 1362–1372 (2008).

    CAS  PubMed  Google Scholar 

  4. Hughes, A. J., Daniel, S. E., Ben-Shlomo, Y. & Lees, A. J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125, 861–870 (2002).

    PubMed  Google Scholar 

  5. Litvan, I. et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology 48, 119–125 (1997).

    CAS  PubMed  Google Scholar 

  6. Osaki, Y. et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov. Disord. 19, 181–189 (2004).

    PubMed  Google Scholar 

  7. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Osaki, Y. et al. Do published criteria improve clinical diagnostic accuracy in multiple system atrophy? Neurology 59, 1486–1491 (2002).

    CAS  PubMed  Google Scholar 

  9. Rajput, A. H., Rozdilsky, B. & Rajput, A. Accuracy of clinical diagnosis in parkinsonism—a prospective study. Can. J. Neurol. Sci. 18, 275–278 (1991).

    CAS  PubMed  Google Scholar 

  10. Schrag, A., Ben-Shlomo, Y. & Quinn, N. How valid is the clinical diagnosis of Parkinson's disease in the community? J. Neurol. Neurosurg. Psychiatry 73, 529–534 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Katzenschlager, R., Cardozo, A., Avila Cobo, M. R., Tolosa, E. & Lees, A. J. Unclassifiable parkinsonism in two European tertiary referral centres for movement disorders. Mov. Disord. 18, 1123–1131 (2003).

    PubMed  Google Scholar 

  12. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  13. Lewy, F. H. Paralysis agitans. In Handbuch der Neurologie (Ed. Lawandowsky, M.) 920–958 (Springer-Verlag, Berlin, 1912).

    Google Scholar 

  14. Kosaka, K. Diffuse Lewy body disease in Japan. J. Neurol. 237, 197–204 (1990).

    CAS  PubMed  Google Scholar 

  15. McKeith, I. G. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47, 1113–1124 (1996).

    CAS  PubMed  Google Scholar 

  16. Polymeropoulos, M. H. et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science 274, 1197–1199 (1996).

    CAS  PubMed  Google Scholar 

  17. Mollenhauer, B. et al. Direct quantification of CSF α-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp. Neurol. 213, 315–325 (2008).

    CAS  PubMed  Google Scholar 

  18. Tokuda, T. et al. Decreased α-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson's disease. Biochem. Biophys. Res. Commun. 349, 162–166 (2006).

    CAS  PubMed  Google Scholar 

  19. Barber, R., Panikkar, A. & McKeith, I. G. Dementia with Lewy bodies: diagnosis and management. Int. J. Geriatr. Psychiatry 16 (Suppl. 1), S12–S18 (2001).

    PubMed  Google Scholar 

  20. Holmberg, B., Johnels, B., Blennow, K. & Rosengren, L. Cerebrospinal fluid Aβ42 is reduced in multiple system atrophy but normal in Parkinson's disease and progressive supranuclear palsy. Mov. Disord. 18, 186–190 (2003).

    PubMed  Google Scholar 

  21. Kanemaru, K., Kameda, N. & Yamanouchi, H. Decreased CSF amyloid-β42 and normal tau levels in dementia with Lewy bodies. Neurology 54, 1875–1876 (2000).

    CAS  PubMed  Google Scholar 

  22. Sjögren, M. et al. CSF levels of tau, β-amyloid1–42 and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J. Neural Transm. 107, 563–579 (2000).

    PubMed  Google Scholar 

  23. Verbeek, M. M. et al. Cerebrospinal fluid Aβ42 levels in multiple system atrophy. Mov. Disord. 19, 238–240 (2004).

    PubMed  Google Scholar 

  24. Mollenhauer, B. et al. β-amlyoid1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson's disease dementia. Dement. Geriatr. Cogn. Disord. 22, 200–208 (2006).

    CAS  PubMed  Google Scholar 

  25. Spillantini, M. G. & Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433 (1998).

    CAS  PubMed  Google Scholar 

  26. Perl, D. P. Neuropathology of Alzheimer's disease and related disorders. Neurol. Clin. 18, 847–864 (2000).

    CAS  PubMed  Google Scholar 

  27. Sonnen, J. A. et al. Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurol. 7, 704–714 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Dubois, B. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6, 734–746 (2007).

    PubMed  Google Scholar 

  29. Clark, L. N. et al. Mutations in the glucocerebrosidase gene are associated with early-onset Parkinson disease. Neurology 69, 1270–1277 (2007).

    CAS  PubMed  Google Scholar 

  30. Balducci, C. et al. Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease. Mov. Disord. 22, 1481–1484 (2007).

    PubMed  Google Scholar 

  31. Zhang, J. et al. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol. 129, 526–529 (2008).

    CAS  PubMed  Google Scholar 

  32. Litvan, I. et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome). Neurology 46, 922–930 (1996).

    CAS  PubMed  Google Scholar 

  33. Steele, J. C., Richardson, J. C. & Olszewski, J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch. Neurol. 10, 333–359 (1964).

    CAS  PubMed  Google Scholar 

  34. Williams, D. R. et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain 128, 1247–1258 (2005).

    PubMed  Google Scholar 

  35. Williams, D. R. et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome. Brain 130, 1566–1576 (2007).

    PubMed  Google Scholar 

  36. Jellinger, K. A., Bancher, C., Hauw, J. J. & Verny, M. Progressive supranuclear palsy: neuropathologically based diagnostic clinical criteria. J. Neurol. Neurosurg. Psychiatry 59, 106 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Noguchi, M. et al. Decreased β-amyloid peptide42 in cerebrospinal fluid of patients with progressive supranuclear palsy and corticobasal degeneration. J. Neurol. Sci. 237, 61–65 (2005).

    CAS  PubMed  Google Scholar 

  38. Borroni, B. et al. Pattern of tau forms in CSF is altered in progressive supranuclear palsy. Neurobiol. Aging 30, 34–40 (2009).

    CAS  PubMed  Google Scholar 

  39. Borroni, B. et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 71, 1796–1803 (2008).

    CAS  PubMed  Google Scholar 

  40. Gai, W. P., Power, J. H., Blumbergs, P. C. & Blessing, W. W. Multiple-system atrophy: a new α-synuclein disease? Lancet 352, 547–548 (1998).

    CAS  PubMed  Google Scholar 

  41. Petzold, A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 233, 183–198 (2005).

    CAS  PubMed  Google Scholar 

  42. Holmberg, B., Rosengren, L., Karlsson, J. E. & Johnels, B. Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson's disease. Mov. Disord. 13, 70–77 (1998).

    CAS  PubMed  Google Scholar 

  43. Brettschneider, J. et al. Neurofilament heavy-chain NfHSMI35 in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Mov. Disord. 21, 2224–2227 (2006).

    PubMed  Google Scholar 

  44. Sanchez-Juan, P. et al. CSF tests in the differential diagnosis of Creutzfeldt–Jakob disease. Neurology 67, 637–643 (2006).

    CAS  PubMed  Google Scholar 

  45. Otto, M. et al. Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Neurosci. Lett. 225, 210–212 (1997).

    CAS  PubMed  Google Scholar 

  46. Rebeiz, J. J., Kolodny, E. H. & Richardson, E. P., Jr. Corticodentatonigral degeneration with neuronal achromasia. Arch. Neurol. 18, 20–33 (1968).

    CAS  PubMed  Google Scholar 

  47. Boeve, B. F. et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 53, 795–800 (1999).

    CAS  PubMed  Google Scholar 

  48. Hodges, J. R. et al. Clinicopathological correlates in frontotemporal dementia. Ann. Neurol. 56, 399–406 (2004).

    PubMed  Google Scholar 

  49. Urakami, K. et al. Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J. Neurol. Sci. 183, 95–98 (2001).

    CAS  PubMed  Google Scholar 

  50. Bian, H. et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70, 1827–1835 (2008).

    CAS  PubMed  Google Scholar 

  51. Riemenschneider, M. et al. Tau and Aβ42 protein in CSF of patients with frontotemporal degeneration. Neurology 58, 1622–1628 (2002).

    CAS  PubMed  Google Scholar 

  52. Pijnenburg, Y. A. et al. CSF biomarkers in frontotemporal lobar degeneration: relations with clinical characteristics, apolipoprotein E genotype, and neuroimaging. J. Neurol. Neurosurg. Psychiatry 77, 246–248 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schoonenboom, N. S. et al. Amyloid β(1–42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 62, 1580–1584 (2004).

    CAS  PubMed  Google Scholar 

  54. Fabre, S. F. et al. Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E ε4 frequency, but no tau gene mutations. Exp. Neurol. 168, 413–418 (2001).

    CAS  PubMed  Google Scholar 

  55. Green, A. J., Harvey, R. J., Thompson, E. J. & Rossor, M. N. Increased tau in the cerebrospinal fluid of patients with frontotemporal dementia and Alzheimer's disease. Neurosci. Lett. 259, 133–135 (1999).

    CAS  PubMed  Google Scholar 

  56. Mehta, P. D. et al. Plasma and cerebrospinal fluid levels of amyloid β proteins 1–40 and 1–42 in Alzheimer disease. Arch. Neurol. 57, 100–105 (2000).

    CAS  PubMed  Google Scholar 

  57. Pijnenburg, Y. A. et al. Decreased cerebrospinal fluid amyloid β(1–40) levels in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 78, 735–737 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. de Jong, D. et al. CSF neurofilament proteins in the differential diagnosis of dementia. J. Neurol. Neurosurg. Psychiatry 78, 936–938 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zijlmans, J. C., Daniel, S. E., Hughes, A. J., Revesz, T. & Lees, A. J. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov. Disord. 19, 630–640 (2004).

    PubMed  Google Scholar 

  60. Andreasen, N. et al. Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample. Neurology 53, 1488–1494 (1999).

    CAS  PubMed  Google Scholar 

  61. Vigo-Pelfrey, C. et al. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer's disease. Neurology 45, 788–793 (1995).

    CAS  PubMed  Google Scholar 

  62. de Jong, D., Jansen, R. W., Kremer, B. P. & Verbeek, M. M. Cerebrospinal fluid amyloid β42/phosphorylated tau ratio discriminates between Alzheimer's disease and vascular dementia. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 755–758 (2006).

    PubMed  Google Scholar 

  63. Kosunen, O. et al. Diagnostic accuracy of Alzheimer's disease: a neuropathological study. Acta Neuropathol. 91, 185–193 (1996).

    CAS  PubMed  Google Scholar 

  64. Hakim, S. & Adams, R. D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 2, 307–327 (1965).

    CAS  PubMed  Google Scholar 

  65. Schott, J. M. et al. Shunt responsive progressive supranuclear palsy? Mov. Disord. 22, 902–903 (2007).

    PubMed  Google Scholar 

  66. Savolainen, S., Paljarvi, L. & Vapalahti, M. Prevalence of Alzheimer's disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study. Acta Neurochir. (Wien) 141, 849–853 (1999).

    CAS  Google Scholar 

  67. Kudo, T. et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin. Neurosci. 54, 199–202 (2000).

    CAS  PubMed  Google Scholar 

  68. Kapaki, E. N. et al. Cerebrospinal fluid tau, phospho-tau181 and β-amyloid1–42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer's disease. Eur. J. Neurol. 14, 168–173 (2007).

    CAS  PubMed  Google Scholar 

  69. Bateman, R. J., Wen, G., Morris, J. C. & Holtzman, D. M. Fluctuations of CSF amyloid-β levels: implications for a diagnostic and therapeutic biomarker. Neurology 68, 666–669 (2007).

    CAS  PubMed  Google Scholar 

  70. Lewczuk, P. et al. International quality control survey of neurochemical dementia diagnostics. Neurosci. Lett. 409, 1–4 (2006).

    CAS  PubMed  Google Scholar 

  71. Blennow, K. et al. Longitudinal stability of CSF biomarkers in Alzheimer's disease. Neurosci. Lett. 419, 18–22 (2007).

    CAS  PubMed  Google Scholar 

  72. Kaiser, E., Schonknecht, P., Thomann, P. A., Hunt, A. & Schroder, J. Influence of delayed CSF storage on concentrations of phospho-tau protein (181), total tau protein and β-amyloid (1–42). Neurosci. Lett. 417, 193–195 (2007).

    CAS  PubMed  Google Scholar 

  73. Lewczuk, P. et al. Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid β peptides. Clin. Chem. 52, 332–334 (2006).

    CAS  PubMed  Google Scholar 

  74. Weisskopf, M. G., O'Reilly, E., Chen, H., Schwarzschild, M. A. & Ascherio, A. Plasma urate and risk of Parkinson's disease. Am. J. Epidemiol. 166, 561–567 (2007).

    CAS  PubMed  Google Scholar 

  75. Davis, J. W. et al. Observations on serum uric acid levels and the risk of idiopathic Parkinson's disease. Am. J. Epidemiol. 144, 480–484 (1996).

    CAS  PubMed  Google Scholar 

  76. de Lau, L. M., Koudstaal, P. J., Hofman, A. & Breteler, M. M. Serum uric acid levels and the risk of Parkinson disease. Ann. Neurol. 58, 797–800 (2005).

    CAS  PubMed  Google Scholar 

  77. Alonso, A., Rodriguez, L. A., Logroscino, G. & Hernan, M. A. Gout and risk of Parkinson disease: a prospective study. Neurology 69, 1696–1700 (2007).

    PubMed  Google Scholar 

  78. Duan, W. et al. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. J. Neurochem. 80, 101–110 (2002).

    CAS  PubMed  Google Scholar 

  79. Church, W. H. & Ward, V. L. Uric acid is reduced in the substantia nigra in Parkinson's disease: effect on dopamine oxidation. Brain Res. Bull. 33, 419–425 (1994).

    CAS  PubMed  Google Scholar 

  80. Schwarzschild, M. A. et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol. 65, 716–723 (2008).

    PubMed  PubMed Central  Google Scholar 

  81. Bogdanov, M. et al. Metabolomic profiling to develop blood biomarkers for Parkinson's disease. Brain 131, 389–396 (2008).

    PubMed  Google Scholar 

  82. Connolly, J., Siderowf, A., Clark, C. M., Mu, D. & Pratico, D. F2 isoprostane levels in plasma and urine do not support increased lipid peroxidation in cognitively impaired Parkinson disease patients. Cogn. Behav. Neurol. 21, 83–86 (2008).

    PubMed  Google Scholar 

  83. Sato, S., Mizuno, Y. & Hattori, N. Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease. Neurology 64, 1081–1083 (2005).

    CAS  PubMed  Google Scholar 

  84. Barbour, R. et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener. Dis. 5, 55–59 (2008).

    CAS  PubMed  Google Scholar 

  85. Michell, A. W., Luheshi, L. M. & Barker, R. A. Skin and platelet α-synuclein as peripheral biomarkers of Parkinson's disease. Neurosci. Lett. 381, 294–298 (2005).

    CAS  PubMed  Google Scholar 

  86. Tamo, W. et al. Expression of α-synuclein, the precursor of non-amyloid β component of Alzheimer's disease amyloid, in human cerebral blood vessels. Neurosci. Lett. 326, 5–8 (2002).

    CAS  PubMed  Google Scholar 

  87. Hoepken, H. H. et al. Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp. Neurol. 212, 307–313 (2008).

    CAS  PubMed  Google Scholar 

  88. Michell, A. W., Lewis, S. J., Foltynie, T. & Barker, R. A. Biomarkers and Parkinson's disease. Brain 127, 1693–1705 (2004).

    CAS  PubMed  Google Scholar 

  89. Tolosa, E., Wenning, G. & Poewe, W. The diagnosis of Parkinson's disease. Lancet Neurol. 5, 75–86 (2006).

    PubMed  Google Scholar 

  90. Gibb, W. R. & Lees, A. J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 51, 745–752 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Williams, D. R. & Lees, A. J. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 8, 270–279 (2009).

    PubMed  Google Scholar 

  92. Litvan, I. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47, 1–9 (1996).

    CAS  PubMed  Google Scholar 

  93. Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Michael Eller was funded through the Rasmussen Bequest. We would like to thank Tania McKenny for her assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eller, M., Williams, D. Biological fluid biomarkers in neurodegenerative parkinsonism. Nat Rev Neurol 5, 561–570 (2009). https://doi.org/10.1038/nrneurol.2009.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing