Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurocognitive function after radiotherapy for paediatric brain tumours

Abstract

The brain is highly vulnerable to neurotoxic agents during the prime learning period of a child's life. Paediatric patients with brain tumours who are treated with cranial radiation therapy (CRT) often go on to develop neurocognitive deficits, which are reflected in poor academic achievement and impaired memory, attention and processing speed. The extent of these delayed effects varies with radiation dose, brain volume irradiated, and age at treatment, and might also be influenced by genetic factors and individual susceptibility. CRT-induced impairment involves axonal damage and disruption of white matter growth, and can affect brain structures implicated in memory function and neurogenesis, such as the hippocampus. In this article, we review the underlying mechanisms and clinical consequences of CRT-induced neurocognitive damage in survivors of paediatric brain tumours. We discuss the recent application of neuroimaging technologies to identify white matter injury following CRT, and highlight new radiation techniques, pharmacological and neurological interventions, as well as rehabilitation programmes that have potential to minimize neurocognitive impairment following CRT.

Key Points

  • Cranial radiation therapy (CRT) for treatment of brain tumours in paediatric patients can cause subsequent neurocognitive impairment, particularly in patients who were very young at the time of irradiation

  • CRT can impair development of white and grey matter, and can inhibit neurogenesis and synaptic plasticity—two processes that are crucial for learning and academic achievement

  • Additional factors, such as the tumour itself, hydrocephalus, chemotherapy and other drugs, can contribute to cognitive impairment in survivors of paediatric brain tumours

  • New strategies to prevent and treat CRT-induced neurocognitive damage, most notably new radiation techniques that spare healthy brain tissue, are increasingly used to avoid this adverse effect of radiotherapy

  • Rehabilitation of paediatric patients treated with CRT is also possible through the child's school environment and cognitive training programmes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of cranial radiation therapy on IQ in paediatric patients with low-grade glioma.
Figure 2: New approaches to avoid radiation-induced neurotoxicity.
Figure 3: Management of neurotoxicity induced by radiation therapy.

Similar content being viewed by others

References

  1. Pollack, I. F. & Jakacki, R. I. Childhood brain tumors: epidemiology, current management and future directions. Nat. Rev. Neurol. 7, 495–501 (2011).

    PubMed  Google Scholar 

  2. Goldsby, R. E. et al. Late-occurring neurologic sequelae in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 28, 324–331 (2010).

    PubMed  Google Scholar 

  3. Sands, S. A. et al. Long-term follow-up of children treated for high-grade gliomas: Children's Oncology Group L991 final study report. J. Clin. Oncol. 30, 943–949 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Raznahan, A. et al. How does your cortex grow? J. Neurosci. 31, 7174–7177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mechelli, A., Friston, K. J., Frackowiak, R. S. & Price, C. J. Structural covariance in the human cortex. J. Neurosci. 25, 8303–8310 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).

    CAS  PubMed  Google Scholar 

  7. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K. & Alkire, M. T. Structural brain variation and general intelligence. Neuroimage 23, 425–433 (2004).

    PubMed  Google Scholar 

  8. Hermoye, L. et al. Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29, 493–504 (2006).

    PubMed  Google Scholar 

  9. Zhai, G., Lin, W., Wilber, K. P., Gerig, G. & Gilmore, J. H. Comparisons of regional white matter diffusion in healthy neonates and adults performed with a 3.0-T head-only MR imaging unit. Radiology 229, 673–681 (2003).

    PubMed  Google Scholar 

  10. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Google Scholar 

  11. Saxe, M. D. et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc. Natl Acad. Sci. USA 103, 17501–17506 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shors, T. J., Townsend, D. A., Zhao, M., Kozorovitskiy, Y. & Gould, E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus 12, 578–584 (2002).

    PubMed  PubMed Central  Google Scholar 

  13. Liu, J., Solway, K., Messing, R. O. & Sharp, F. R. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 18, 7768–7778 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F. & Gage, F. H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Johnston, M. V. et al. Plasticity and injury in the developing brain. Brain Dev. 31, 1–10 (2009).

    PubMed  Google Scholar 

  17. Huttenlocher, P. R. Basic neuroscience research has important implications for child development. Nat. Neurosci. 6, 541 (2003).

    CAS  PubMed  Google Scholar 

  18. Kennedy, K. M. & Raz, N. Aging white matter and cognition: differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 47, 916–927 (2009).

    PubMed  PubMed Central  Google Scholar 

  19. Middleton, F. A. & Strick, P. L. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Brain Res. Rev. 31, 236–250 (2000).

    CAS  PubMed  Google Scholar 

  20. Allen, G., Buxton, R. B., Wong, E. C. & Courchesne, E. Attentional activation of the cerebellum independent of motor involvement. Science 275, 1940–1943 (1997).

    CAS  PubMed  Google Scholar 

  21. Levisohn, L., Cronin-Golomb, A. & Schmahmann, J. D. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123, 1041–1050 (2000).

    PubMed  Google Scholar 

  22. Hayter, A. L., Langdon, D. W. & Ramnani, N. Cerebellar contributions to working memory. Neuroimage 36, 943–954 (2007).

    CAS  PubMed  Google Scholar 

  23. Kirschen, M. P., Chen, S. H., Schraedley-Desmond, P. & Desmond, J. E. Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage 24, 462–472 (2005).

    PubMed  Google Scholar 

  24. Ravizza, S. M. et al. Cerebellar damage produces selective deficits in verbal working memory. Brain 129, 306–320 (2006).

    PubMed  Google Scholar 

  25. Law, N. et al. Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. Neuroimage 56, 2238–2248 (2011).

    PubMed  Google Scholar 

  26. Morris, E. B. et al. Proximal dentatothalamocortical tract involvement in posterior fossa syndrome. Brain 132, 3087–3095 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Catsman-Berrevoets, C. E. & Aarsen, F. K. The spectrum of neurobehavioural deficits in the Posterior Fossa Syndrome in children after cerebellar tumour surgery. Cortex 46, 933–946 (2010).

    PubMed  Google Scholar 

  28. Palmer, S. L. et al. Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. Neuro. Oncol. 12, 1311–1317 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Vaquero, E., Gómez, C. M., Quintero, E. A., González-Rosa, J. J. & Márquez, J. Differential prefrontal-like deficit in children after cerebellar astrocytoma and medulloblastoma tumor. Behav. Brain Funct. 4, 18 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Schmahmann, J. D. & Sherman, J. C. The cerebellar cognitive affective syndrome. Brain 121, 561–579 (1998).

    PubMed  Google Scholar 

  31. Di Rocco, C. et al. Preoperative and postoperative neurological, neuropsychological and behavioral impairment in children with posterior cranial fossa astrocytomas and medulloblastomas: the role of the tumor and the impact of the surgical treatment. Childs Nerv. Syst. 26, 1173–1188 (2010).

    PubMed  Google Scholar 

  32. Charalambides, C., Dinopoulos, A. & Sgouros, S. Neuropsychological sequelae and quality of life following treatment of posterior fossa ependymomas in children. Childs Nerv. Syst. 25, 1313–1320 (2009).

    PubMed  Google Scholar 

  33. Mulhern, R. K., Hancock, J., Fairclough, D. & Kun, L. Neuropsychological status of children treated for brain tumors: a critical review and integrative analysis. Med. Pediatr. Oncol. 20, 181–191 (1992).

    CAS  PubMed  Google Scholar 

  34. Palmer, S. L. et al. Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J. Clin. Oncol. 19, 2302–2308 (2001).

    CAS  PubMed  Google Scholar 

  35. Schatz, J., Kramer, J. H., Ablin, A. & Matthay, K. K. Processing speed, working memory, and IQ: a developmental model of cognitive deficits following cranial radiation therapy. Neuropsychology 14, 189–200 (2000).

    CAS  PubMed  Google Scholar 

  36. Reddick, W. E. et al. Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer 97, 2512–2519 (2003).

    PubMed  Google Scholar 

  37. Mabbott, D. J., Penkman, L., Witol, A., Strother, D. & Bouffet, E. Core neurocognitive functions in children treated for posterior fossa tumors. Neuropsychology 22, 159–168 (2008).

    PubMed  Google Scholar 

  38. Nagel, B. J. et al. Early patterns of verbal memory impairment in children treated for medulloblastoma. Neuropsychology 20, 105–112 (2006).

    PubMed  Google Scholar 

  39. Mulhern, R. K. et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J. Clin. Oncol. 23, 5511–5519 (2005).

    PubMed  Google Scholar 

  40. Kieffer-Renaux, V. et al. Patterns of neuropsychological deficits in children with medulloblastoma according to craniospatial irradiation doses. Dev. Med. Child Neurol. 42, 741–745 (2000).

    CAS  PubMed  Google Scholar 

  41. Mulhern, R. K. et al. Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation: a Pediatric Oncology Group study. J. Clin. Oncol. 16, 1723–1728 (1998).

    CAS  PubMed  Google Scholar 

  42. Mabbott, D. J. et al. Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J. Clin. Oncol. 23, 2256–2263 (2005).

    PubMed  Google Scholar 

  43. Merchant, T. E. et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol. 22, 3156–3162 (2004).

    PubMed  Google Scholar 

  44. Merchant, T. E., Kiehna, E. N., Li, C., Xiong, X. & Mulhern, R. K. Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma. Int. J. Radiat. Oncol. Biol. Phys. 63, 1546–1554 (2005).

    PubMed  Google Scholar 

  45. Merchant, T. E. et al. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 65, 210–221 (2006).

    PubMed  Google Scholar 

  46. Merchant, T. E., Conklin, H. M., Wu, S., Lustig, R. H. & Xiong, X. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. J. Clin. Oncol. 27, 3691–3697 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Hoppe-Hirsch, E. et al. Medulloblastoma in childhood: progressive intellectual deterioration. Childs Nerv. Syst. 6, 60–65 (1990).

    CAS  PubMed  Google Scholar 

  48. Mulhern, R. K. & Palmer, S. L. Neurocognitive late effects in pediatric cancer. Curr. Probl. Cancer 27, 177–197 (2003).

    PubMed  Google Scholar 

  49. Jalali, R. et al. Factors influencing neurocognitive outcomes in young patients with benign and low-grade brain tumors treated with stereotactic conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 77, 974–979 (2010).

    PubMed  Google Scholar 

  50. Karussis, D., Leker, R. R. & Abramsky, O. Cognitive dysfunction following thalamic stroke: a study of 16 cases and review of the literature. J. Neurol. Sci. 172, 25–29 (2000).

    CAS  PubMed  Google Scholar 

  51. Peterson, B. S. et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284, 1939–1947 (2000).

    CAS  PubMed  Google Scholar 

  52. Liu, A. K. et al. Changes in cerebral cortex of children treated for medulloblastoma. Int. J Radiat. Oncol. Biol. Phys. 68, 992–998 (2007).

    PubMed  Google Scholar 

  53. Reeves, C. B. et al. Attention and memory functioning among pediatric patients with medulloblastoma. J. Pediatr. Psychol. 31, 272–280 (2006).

    PubMed  Google Scholar 

  54. Mulhern, R. K., Merchant, T. E., Gajjar, A., Reddick, W. E. & Kun, L. E. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 5, 399–408 (2004).

    PubMed  Google Scholar 

  55. Mulhern, R. K. et al. Neurocognitive deficits in medulloblastoma survivors and white matter loss. Ann. Neurol. 46, 834–841 (1999).

    CAS  PubMed  Google Scholar 

  56. Mabbott, D. J., Noseworthy, M. D., Bouffet, E., Rockel, C. & Laughlin, S. Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. Neuro. Oncol. 8, 244–252 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. Mulhern, R. K. et al. Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. J. Clin. Oncol. 19, 472–479 (2001).

    CAS  PubMed  Google Scholar 

  58. Khong, P. L. et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J. Clin. Oncol. 24, 884–890 (2006).

    PubMed  Google Scholar 

  59. Nagy, Z., Westerberg, H. & Klingberg, T. Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 16, 1227–1233 (2004).

    PubMed  Google Scholar 

  60. Wang, S. et al. Longitudinal diffusion tensor magnetic resonance imaging study of radiation-induced white matter damage in a rat model. Cancer Res. 69, 1190–1198 (2009).

    CAS  PubMed  Google Scholar 

  61. Cao, Y. et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. Clin. Cancer Res. 15, 1747–1754 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kinnunen, K. M. et al. White matter damage and cognitive impairment after traumatic brain injury. Brain 134, 449–463 (2011).

    PubMed  Google Scholar 

  63. Roosendaal, S. D. et al. Regional DTI differences in multiple sclerosis patients. Neuroimage 44, 1397–1403 (2009).

    CAS  PubMed  Google Scholar 

  64. Abayomi, O. K. Pathogenesis of cognitive decline following therapeutic irradiation for head and neck tumors. Acta Oncol. 41, 346–351 (2002).

    PubMed  Google Scholar 

  65. Nagel, B. J. et al. Abnormal hippocampal development in children with medulloblastoma treated with risk-adapted irradiation. AJNR Am. J. Neuroradiol. 25, 1575–1582 (2004).

    PubMed  PubMed Central  Google Scholar 

  66. Raber, J. et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res. 162, 39–47 (2004).

    CAS  PubMed  Google Scholar 

  67. Douw, L. et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 8, 810–818 (2009).

    PubMed  Google Scholar 

  68. Conklin, H. M., Li, C., Xiong, X., Ogg, R. J. & Merchant, T. E. Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. J. Clin. Oncol. 26, 3965–3970 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. Grill, J. et al. Critical risk factors for intellectual impairment in children with posterior fossa tumors: the role of cerebellar damage. J. Neurosurg. 101 (2 Suppl.), 152–158 (2004).

    PubMed  Google Scholar 

  70. Duffner, P. K. et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med. 328, 1725–1731 (1993).

    CAS  PubMed  Google Scholar 

  71. Merchant, T. E. et al. The effects of hydrocephalus on intelligence quotient in children with localized infratentorial ependymoma before and after focal radiation therapy. J. Neurosurg. 101 (2 Suppl.), 159–168 (2004).

    PubMed  Google Scholar 

  72. Hardy, K. K., Bonner, M. J., Willard, V. W., Watral, M. A. & Gururangan, S. Hydrocephalus as a possible additional contributor to cognitive outcome in survivors of pediatric medulloblastoma. Psychooncology 17, 1157–1161 (2008).

    PubMed  Google Scholar 

  73. Reimers, T. S. et al. Cognitive deficits in long-term survivors of childhood brain tumors: identification of predictive factors. Med. Pediatr. Oncol. 40, 26–34 (2003).

    PubMed  Google Scholar 

  74. Duffner, P. K. Risk factors for cognitive decline in children treated for brain tumors. Eur. J. Paediatr. Neurol. 14, 106–115 (2010).

    PubMed  Google Scholar 

  75. Mahoney, D. H. Jr et al. Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group phase III trial. J. Clin. Oncol. 16, 246–254 (1998).

    CAS  PubMed  Google Scholar 

  76. Riva, D. et al. Intrathecal methotrexate affects cognitive function in children with medulloblastoma. Neurology 59, 48–53 (2002).

    CAS  PubMed  Google Scholar 

  77. Meador, K. J. Cognitive outcomes and predictive factors in epilepsy. Neurology 58, S21–S26 (2002).

    PubMed  Google Scholar 

  78. Mula, M. & Trimble, M. R. Antiepileptic drug-induced cognitive adverse effects: potential mechanisms and contributing factors. CNS Drugs 23, 121–137 (2009).

    CAS  PubMed  Google Scholar 

  79. Wu, T. et al. Clinical efficacy and cognitive and neuropsychological effects of levetiracetam in epilepsy: an open-label multicenter study. Epilepsy Behav. 16, 468–474 (2009).

    PubMed  Google Scholar 

  80. Ryan, R., Booth, S. & Price, S. Corticosteroid-use in primary and secondary brain tumour patients: a review. J. Neurooncol. 106, 449–459 (2012).

    CAS  PubMed  Google Scholar 

  81. Wolkowitz, O. M., Lupien, S. J., Bigler, E., Levin, R. B. & Canick, J. The “steroid dementia syndrome”: an unrecognized complication of glucocorticoid treatment. Ann. N. Y. Acad. Sci. 1032, 191–194 (2004).

    PubMed  Google Scholar 

  82. Damsted, S. K., Born, A. P., Paulson, O. B. & Uldall, P. Exogenous glucocorticoids and adverse cerebral effects in children. Eur. J. Paediatr. Neurol. 15, 465–477 (2011).

    PubMed  Google Scholar 

  83. Gondi, V. et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 78, 1244–1252 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Marsh, J. C., Gielda, B. T., Herskovic, A. M. & Abrams, R. A. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J. Oncol. 2010, 198–208 (2010).

    Google Scholar 

  85. Carrie, C. et al. Online quality control, hyperfractionated radiotherapy alone and reduced boost volume for standard risk medulloblastoma: long-term results of MSFOP 98. J. Clin. Oncol. 27, 1879–1883 (2009).

    PubMed  Google Scholar 

  86. Gandola, L. et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 27, 566–571 (2009).

    CAS  PubMed  Google Scholar 

  87. Prados, M. D. et al. Hyperfractionated craniospinal radiation therapy for primitive neuroectodermal tumors: results of a Phase II study. Int. J. Radiat. Oncol. Biol. Phys. 43, 279–285 (1999).

    CAS  PubMed  Google Scholar 

  88. St Clair, W. H. et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 58, 727–734 (2004).

    CAS  PubMed  Google Scholar 

  89. Miralbell, R., Lomax, A., Cella, L. & Schneider, U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys. 54, 824–829 (2002).

    PubMed  Google Scholar 

  90. Barnett, G. C. et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study. Lancet Oncol. 13, 65–77 (2012).

    CAS  PubMed  Google Scholar 

  91. West, C. et al. Establishment of a Radiogenomics Consortium. Int. J. Radiat. Oncol. Biol. Phys. 76, 1295–1296 (2010).

    PubMed  Google Scholar 

  92. Monje, M. L., Mizumatsu, S., Fike, J. R. & Palmer, T. D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955–962 (2002).

    CAS  PubMed  Google Scholar 

  93. Monje, M. L. et al. Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann. Neurol. 62, 515–520 (2007).

    PubMed  Google Scholar 

  94. Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

    CAS  PubMed  Google Scholar 

  95. Yazlovitskaya, E. M. et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 66, 11179–11186 (2006).

    CAS  PubMed  Google Scholar 

  96. Yang, E. S. et al. Lithium-mediated protection of hippocampal cells involves enhancement of DNA-PK-dependent repair in mice. J. Clin. Invest. 119, 1124–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ramanan, S. et al. The PPARα agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. 75, 870–877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Pasquier, E., Kavallaris, M. & Andre, N. Metronomic chemotherapy: new rationale for new directions. Nat. Rev. Clin. Oncol. 7, 455–465 (2010).

    PubMed  Google Scholar 

  99. Halliwell, B. & Aruoma, O. I. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19 (1991).

    CAS  PubMed  Google Scholar 

  100. Rola, R. et al. High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis. Radiat. Res. 164, 556–560 (2005).

    CAS  PubMed  Google Scholar 

  101. Hirsch, C. Continued use of antipsychotic drugs increased long-term mortality in patients with Alzheimer disease. Evid. Based Med. 14, 115 (2009).

    PubMed  Google Scholar 

  102. Kuzumaki, N. et al. Hippocampal epigenetic modification at the doublecortin gene is involved in the impairment of neurogenesis with aging. Synapse 64, 611–616 (2010).

    CAS  PubMed  Google Scholar 

  103. Manda, K., Ueno, M. & Anzai, K. Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J. Pineal Res. 46, 71–78 (2009).

    CAS  PubMed  Google Scholar 

  104. Kilic, E. et al. Delayed melatonin administration promotes neuronal survival, neurogenesis and motor recovery, and attenuates hyperactivity and anxiety after mild focal cerebral ischemia in mice. J. Pineal Res. 45, 142–148 (2008).

    CAS  PubMed  Google Scholar 

  105. Ramirez-Rodriguez, G., Klempin, F., Babu, H., Benítez-King, G. & Kempermann, G. Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology 34, 2180–2190 (2009).

    CAS  PubMed  Google Scholar 

  106. Berridge, C. W. et al. Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α1- and α2-receptors. Biol. Psychiatry 71, 467–473 (2012).

    CAS  PubMed  Google Scholar 

  107. Brown, R. T. et al. Treatment of attention-deficit/hyperactivity disorder: overview of the evidence. Pediatrics 115, e749–e757 (2005).

    PubMed  Google Scholar 

  108. Cooper, M. R., Bird, H. M. & Steinberg, M. Efficacy and safety of modafinil in the treatment of cancer-related fatigue. Ann. Pharmacother. 43, 721–725 (2009).

    CAS  PubMed  Google Scholar 

  109. Shaw, E. G. et al. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J. Clin. Oncol. 24, 1415–1420 (2006).

    CAS  PubMed  Google Scholar 

  110. Lee, J. K. et al. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. Stem Cells 28, 329–343 (2010).

    CAS  PubMed  Google Scholar 

  111. Venkataramana, N. K. et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl. Res. 155, 62–70 (2010).

    CAS  PubMed  Google Scholar 

  112. Kim, Y. J. et al. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57, 13–23 (2009).

    PubMed  Google Scholar 

  113. Munoz, J. R. et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc. Natl Acad. Sci. USA 102, 18171–18176 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Acharya, M. M. et al. Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834–4845 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Deisseroth, K. et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004).

    CAS  PubMed  Google Scholar 

  116. Reeves, C. B. et al. Brief report: sluggish cognitive tempo among pediatric survivors of acute lymphoblastic leukemia. J. Pediatr. Psychol. 32, 1050–1054 (2007).

    PubMed  Google Scholar 

  117. Searle, N. S., Askins, M. & Bleyer, W. A. Homebound schooling is the least favorable option for continued education of adolescent cancer patients: a preliminary report. Med. Pediatr. Oncol. 40, 380–384 (2003).

    PubMed  Google Scholar 

  118. Hassler, M. R. et al. Neurocognitive training in patients with high-grade glioma: a pilot study. J. Neurooncol. 97, 109–115 (2010).

    PubMed  Google Scholar 

  119. Locke, D. E. et al. Cognitive rehabilitation and problem-solving to improve quality of life of patients with primary brain tumors: a pilot study. J. Support. Oncol. 6, 383–391 (2008).

    PubMed  Google Scholar 

  120. Gehring, K. et al. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J. Clin. Oncol. 27, 3712–3722 (2009).

    PubMed  Google Scholar 

  121. Butler, R. W. et al. A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. J. Consult. Clin. Psychol. 76, 367–378 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Brockmann, S. et al. Reorganization of functional areas of the brain after brain irradiation. J. Clin. Oncol. 29, e321–e323 (2011).

    PubMed  Google Scholar 

  123. Luo, C. X. et al. Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke. J. Neurosci. Res. 85, 1637–1646 (2007).

    CAS  PubMed  Google Scholar 

  124. van Praag, H. et al. Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y. & Covinsky, K. A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch. Intern. Med. 161, 1703–1708 (2001).

    CAS  PubMed  Google Scholar 

  126. Wong-Goodrich. S. J. et al. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 70, 9329–9338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. West, C. M. & Barnett, G. C. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med. 3, 52 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ciccolini, J., Mercier, C., Dahan, L. & André, N. Integrating pharmacogenetics into gemcitabine dosing—time for a change? Nat. Rev. Clin. Oncol. 8, 439–444 (2011).

    CAS  PubMed  Google Scholar 

  129. Barnett, G. C. et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer 9, 134–142 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Andreassen, C. N. & Alsner, J. Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother. Oncol. 92, 299–309 (2009).

    CAS  PubMed  Google Scholar 

  131. Iannuzzi, C. M., Atencio, D. P., Green, S., Stock, R. G. & Rosenstein, B. S. ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys. 52, 606–613 (2002).

    CAS  PubMed  Google Scholar 

  132. Barahmani, N. et al. Glutathione S transferase M1 and T1 polymorphisms may predict adverse effects after therapy in children with medulloblastoma. Neuro. Oncol. 11, 292–300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Best, T. et al. Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin's lymphoma. Nat. Med. 17, 941–943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kerns, S. L. et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 78, 1292–1300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article. L. Padovani, N. André and X. Muracciole made substantial contributions to discussion of the content and writing of the article. All authors contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Laetitia Padovani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Studies of pharmacological strategies to decrease neurotoxicity of radiotherapy (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padovani, L., André, N., Constine, L. et al. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat Rev Neurol 8, 578–588 (2012). https://doi.org/10.1038/nrneurol.2012.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.182

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer