Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging in sepsis-associated encephalopathy—insights and opportunities

Abstract

Sepsis-associated encephalopathy (SAE) refers to a clinical spectrum of acute neurological dysfunction that arises in the context of sepsis. Although the pathophysiology of SAE is incompletely understood, it is thought to involve endothelial activation, blood–brain barrier leakage, inflammatory cell migration, and neuronal loss with neurotransmitter imbalance. SAE is associated with a high risk of mortality. Imaging studies using MRI and CT have demonstrated changes in the brains of patients with SAE that are also seen in disorders such as stroke. Next-generation imaging techniques such as magnetic resonance spectroscopy, diffusion tensor imaging and PET, as well as experimental imaging modalities, provide options for early identification of patients with SAE, and could aid in identification of pathophysiological processes that represent possible therapeutic targets. In this Review, we explore the recent literature on imaging in SAE, relating the findings of these studies to pathological data and experimental studies to obtain insights into the pathophysiology of sepsis-associated neurological dysfunction. Furthermore, we suggest how novel imaging technologies can be used for early-stage proof-of-concept and proof-of-mechanism translational studies, which may help to improve diagnosis in SAE.

Key Points

  • Sepsis-associated encephalopathy (SAE) is a complication of extracranial sepsis that leads to profound neurological dysfunction, and is associated with increased mortality and cognitive impairment

  • The pathophysiology of SAE is incompletely understood but is thought to involve endothelial activation, blood–brain barrier leakage, inflammatory cell migration, and neuronal loss with neurotransmitter imbalance

  • The clinical syndrome of SAE includes features representing not only the direct effects of sepsis and host response, but also the consequences of extracranial physiological abnormalities that result from sepsis

  • Imaging studies using MRI and CT have demonstrated changes in SAE similar to those that are observed in other neurological disorders such as stroke

  • Next-generation imaging techniques—such as magnetic resonance spectroscopy, diffusion-tensor MRI and PET—could reveal pathophysiological processes of SAE to aid diagnosis, identify therapeutic targets and eliminate confounding causes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of diffusion-weighted imaging.
Figure 2: Pathophysiological mechanisms in SAE.
Figure 3: MRI findings in patients with sepsis.
Figure 4: Potential role of imaging in diagnosis of SAE.

Similar content being viewed by others

References

  1. Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304, 1787–1794 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Iacobone, E. et al. Sepsis-associated encephalopathy and its differential diagnosis. Crit. Care Med. 37, S331–S336 (2009).

    PubMed  Google Scholar 

  3. Piazza, O., Russo, E., Cotena, S., Esposito, G. & Tufano, R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br. J. Anaesth. 99, 518–521 (2007).

    CAS  PubMed  Google Scholar 

  4. Piazza, O., Cotena, S., De Robertis, E., Caranci, F. & Tufano, R. Sepsis associated encephalopathy studied by MRI and cerebral spinal fluid S100B measurement. Neurochem. Res. 34, 1289–1292 (2009).

    CAS  PubMed  Google Scholar 

  5. Young, G. B., Bolton, C. F., Archibald, Y. M., Austin, T. W. & Wells, G. A. The electroencephalogram in sepsis-associated encephalopathy. J. Clin. Neurophysiol. 9, 145–152 (1992).

    CAS  PubMed  Google Scholar 

  6. Zauner, C. et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit. Care Med. 30, 1136–1139 (2002).

    PubMed  Google Scholar 

  7. Siami, S., Annane, D. & Sharshar, T. The encephalopathy in sepsis. Crit. Care Clin. 24, 67–82 (2008).

    PubMed  Google Scholar 

  8. Taccone, F. S. et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit. Care 14, R140 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Taccone, F. S. et al. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit. Care 12, 35–42 (2010).

    CAS  PubMed  Google Scholar 

  10. Sprung, C. L. et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit. Care Med. 18, 801–806 (1990).

    CAS  PubMed  Google Scholar 

  11. Morandi, A. et al. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study. Crit. Care Med. 40, 2182–2189 (2012).

    PubMed  PubMed Central  Google Scholar 

  12. Gunther, M. L. et al. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study. Crit. Care Med. 40, 2022–2032 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Luitse, M. J., Van Asch, C. J. . & Klijn, C. J. Deep coma and diffuse white matter abnormalities caused by sepsis-associated encephalopathy. Lancet 381, 2222 (2013).

    PubMed  Google Scholar 

  14. Gofton, T. E. & Young, G. B. Sepsis-associated encephalopathy. Nat. Rev. Neurol. 8, 557–566 (2012).

    CAS  PubMed  Google Scholar 

  15. Abe, S. et al. Sepsis associated encephalopathy in an infant with biliary atresia. Brain Dev. 30, 544–547 (2008).

    PubMed  Google Scholar 

  16. Bartynski, W. S., Boardman, J. F., Zeigler, Z. R., Shadduck, R. K. & Lister, J. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. AJNR Am. J. Neuroradiol. 27, 2179–2190 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Waydhas, C. Intrahospital transport of critically ill patients. Crit. Care 3, R83–R89 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Peden, C. J., Menon, D. K., Hall, A. S., Sargentoni, J. & Whitwam, J. G. Magnetic resonance for the anaesthetist. Part II: Anaesthesia and monitoring in MR units. Anaesthesia 47, 508–517 (1992).

    CAS  PubMed  Google Scholar 

  19. Kondo, A. et al. Fulminant sepsis-associated encephalopathy in two children: serial neuroimaging findings and clinical course. Neuropediatrics 40, 157–161 (2009).

    CAS  PubMed  Google Scholar 

  20. Höllinger, P., Zürcher, R., Schroth, G. & Mattle, H. P. Diffusion magnetic resonance imaging findings in cerebritis and brain abscesses in a patient with septic encephalopathy. J. Neurol. 247, 232–234 (2000).

    PubMed  Google Scholar 

  21. Jackson, A. C., Gilbert, J. J., Young, G. B. & Bolton, C. F. The encephalopathy of sepsis. Can. J. Neurol. Sci. 12, 303–307 (1985).

    CAS  PubMed  Google Scholar 

  22. Gupta, R. K. et al. In vivo demonstration of neuroinflammatory molecule expression in brain abscess with diffusion tensor imaging. AJNR Am. J. Neuroradiol. 29, 326–332 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vernooij, M. W. et al. Incidental findings on brain MRI in the general population. N. Engl. J. Med. 357, 1821–1828 (2007).

    CAS  PubMed  Google Scholar 

  24. Suchyta, M. R., Jephson, A. & Hopkins, R. O. Neurologic changes during critical illness: brain imaging findings and neurobehavioral outcomes. Brain Imaging Behav. 4, 22–34 (2010).

    PubMed  Google Scholar 

  25. Schellinger, P. D. et al. Evidence-based guideline: The role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 75, 177–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Morgenstern, L. B. et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 41, 2108–2129 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Britt, R. H. & Enzmann, D. R. Clinical stages of human brain abscesses on serial CT scans after contrast infusion. Computerized tomographic, neuropathological, and clinical correlations. J. Neurosurg. 59, 972–989 (1983).

    CAS  PubMed  Google Scholar 

  28. Chang, S. C. et al. Diffusion-weighted MRI features of brain abscess and cystic or necrotic brain tumors: comparison with conventional MRI. Clin. Imaging 26, 227–236 (2002).

    PubMed  Google Scholar 

  29. Sharshar, T. et al. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med. 33, 798–806 (2007).

    PubMed  Google Scholar 

  30. Finelli, P. F. & Uphoff, D. F. Magnetic resonance imaging abnormalities with septic encephalopathy. J. Neurol. Neurosurg. Psychiatry 75, 1189–1191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fugate, J. E. et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin. Proc. 85, 427–432 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Aridon, P. et al. Reversible posterior leukoencephalopathy syndrome in a patient with thrombotic thrombocytopenic purpura. Neurol. Sci. 32, 469–472 (2011).

    PubMed  Google Scholar 

  33. Booth, K. K., Terrell, D. R., Vesely, S. K. & George, J. N. Systemic infections mimicking thrombotic thrombocytopenic purpura. Am. J. Hematol. 86, 743–751 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Smith, D. B. & Gulinson, J. Fatal cerebral edema complicating toxic shock syndrome. Neurosurgery 22, 598–599 (1988).

    CAS  PubMed  Google Scholar 

  35. Moss, R. F., Parmar, N. K., Tighe, D. & Davies, D. C. Adrenergic agents modify cerebral edema and microvessel ultrastructure in porcine sepsis. Crit. Care Med. 32, 1916–1921 (2004).

    CAS  PubMed  Google Scholar 

  36. Morandi, A. et al. Neuroimaging in delirious intensive care unit patients: a preliminary case series report. Psychiatry 7, 28–33 (2010).

    PubMed  PubMed Central  Google Scholar 

  37. Jackson, J. C. et al. Acute respiratory distress syndrome, sepsis, and cognitive decline: a review and case study. South. Med. J. 102, 1150–1157 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Semmler, A. et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J. Neurol. Neurosurg. Psychiatry 84, 62–69 (2013).

    PubMed  Google Scholar 

  39. Chavan, S. S. et al. HMGB1 mediates cognitive impairment in sepsis survivors. Mol. Med. 18, 930–937 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mueller, S., Keeser, D., Reiser, M. F. Teipel, S. & Meindl, T. Functional and structural MR imaging in neuropsychiatric disorders, Part 1: imaging techniques and their application in mild cognitive impairment and Alzheimer disease. AJNR Am. J. Neuroradiol. 33, 1845–1850 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Teipel, S. J. et al. Multivariate deformation-based analysis of brain atrophy to predict Alzheimer's disease in mild cognitive impairment. NeuroImage 38, 13–24 (2007).

    PubMed  Google Scholar 

  42. Weiner, M. W. et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 8, S1–S68 (2012).

    PubMed  Google Scholar 

  43. Salmond, C. H., Chatfield, D. A., Menon, D. K., Pickard, J. D. & Sahakian, B. J. Cognitive sequelae of head injury: involvement of basal forebrain and associated structures. Brain 128, 189–200 (2005).

    CAS  PubMed  Google Scholar 

  44. Soeda, A. et al. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task. Neuroradiology 47, 501–506 (2005).

    PubMed  Google Scholar 

  45. Sharshar, T., Polito, A., Checinski, A. & Stevens, R. D. Septic-associated encephalopathy—everything starts at a microlevel. Crit. Care 14, 199 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Serres, S. et al. VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J. 12, 4415–4422 (2011).

    Google Scholar 

  47. Hofer, S. et al. Injury of the blood brain barrier and up-regulation of ICAM-1 in polymicrobial sepsis. J. Surg. Res. 146, 276–281 (2008).

    CAS  PubMed  Google Scholar 

  48. Handa, O., Stephen, J. & Cepinskas, G. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am. J. Physiol. Heart Circ. Physiol. 295, H1712–H1719 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weberpals, M. et al. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J. Neurosci. 29, 14177–14184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharshar, T. et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362, 1799–1805 (2003).

    CAS  PubMed  Google Scholar 

  51. Fujii, H. et al. Measuring brain tissue oxygenation under oxidative stress by ESR/MR dual imaging system. Magn. Reson. Med. Sci. 6, 83–89 (2007).

    CAS  PubMed  Google Scholar 

  52. Tsao, N., Hsu, H. P., Wu, C. M., Liu, C. C. & Lei, H. Y. Tumour necrosis factor-α causes an increase in blood–brain barrier permeability during sepsis. J. Med. Microbiol. 50, 812–821 (2001).

    CAS  PubMed  Google Scholar 

  53. Bogdanski, R. et al. Cerebral histopathology following portal venous infusion of bacteria in a chronic porcine model. Anesthesiology 93, 793–804 (2000).

    CAS  PubMed  Google Scholar 

  54. Argaw, A. T. et al. IL-1 β regulates blood-brain barrier permeability via reactivation of the hypoxia–angiogenesis program. J. Immunol. 177, 5574–5584 (2006).

    CAS  PubMed  Google Scholar 

  55. Bozza, F. A. et al. Sepsis-associated encephalopathy: a magnetic resonance imaging and spectroscopy study. J. Cereb. Blood Flow Metab. 30, 440–448 (2010).

    PubMed  Google Scholar 

  56. Rosengarten, B. et al. LPS-induced endotoxic shock does not cause early brain edema formation—an MRI study in rats. Inflamm. Res. 57, 479–483 (2008).

    CAS  PubMed  Google Scholar 

  57. Bay-Richter, C., Janelidze, S., Hallberg, L. & Brundin, L. Changes in behaviour and cytokine expression upon a peripheral immune challenge. Behav. Brain Res. 222, 193–199 (2011).

    CAS  PubMed  Google Scholar 

  58. Bendszus, M. et al. Gadofluorine M enhancement allows more sensitive detection of inflammatory CNS lesions than T2-w imaging: a quantitative MRI study. Brain 131, 2341–2352 (2008).

    PubMed  Google Scholar 

  59. Stoll, G. et al. Transient widespread blood-brain barrier alterations after cerebral photothrombosis as revealed by gadofluorine M-enhanced magnetic resonance imaging. J. Cereb. Blood Flow Metab. 29, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  60. Wuerfel, E., Infante-Duarte, C., Glumm, R. & Wuerfel, J. T. Gadofluorine M-enhanced MRI shows involvement of circumventricular organs in neuroinflammation. J. Neuroinflammation 7, 70 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Irwan, Y. Y. et al. Quantitative analysis of cytokine-induced vascular toxicity and vascular leak in the mouse brain. J. Immunol. Methods 349, 45–55 (2009).

    CAS  PubMed  Google Scholar 

  62. Hellman, R. N. Gadolinium-induced nephrogenic systemic fibrosis. Semin. Nephrol. 31, 310–316 (2011).

    PubMed  Google Scholar 

  63. Kümpers, P. et al. The synthetic Tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit. Care 15, R261 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Su, G. et al. Blockade of integrin αvβ3 enhances vascular leak in mice by inhibiting endothelial cortical actin formation. Am. J. Resp. Crit. Care Med. 185, 1–49 (2011).

    Google Scholar 

  65. Zannetti, A. et al. Imaging of αvβ3 expression by a bifunctional chimeric RGD peptide not cross-reacting with αvβ5 . Clin. Cancer Res. 15, 5224–5233 (2009).

    CAS  PubMed  Google Scholar 

  66. Flögel, U. et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140–148 (2008).

    PubMed  PubMed Central  Google Scholar 

  67. Vellinga, M. M. et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008).

    PubMed  Google Scholar 

  68. Cho, T.-H. et al. USPIO-enhanced MRI of neuroinflammation at the sub-acute stage of ischemic stroke: preliminary data. Cerebrovasc. Dis. 24, 544–546 (2007).

    PubMed  Google Scholar 

  69. Nighoghossian, N. et al. Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke 38, 303–307 (2007).

    PubMed  Google Scholar 

  70. Schipper, H. M. Neurodegeneration with brain iron accumulation—clinical syndromes and neuroimaging. Biochim. Biophys. Acta 1822, 350–360 (2012).

    CAS  PubMed  Google Scholar 

  71. Price, C. J. et al. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke 35, 1659–1664 (2004).

    CAS  PubMed  Google Scholar 

  72. Jenkinson, M. D. et al. Apparent diffusion coefficients in oligodendroglial tumors characterized by genotype. J. Magn. Reson. Imaging 26, 1405–1412 (2007).

    PubMed  Google Scholar 

  73. Jenkinson, M. D. et al. Cellularity and apparent diffusion coefficient in oligodendroglial tumours characterized by genotype. J. Neurooncol. 96, 385–392 (2010).

    CAS  PubMed  Google Scholar 

  74. Yamashita, Y., Kumabe, T., Higano, S., Watanabe, M. & Tominaga, T. Minimum apparent diffusion coefficient is significantly correlated with cellularity in medulloblastomas. Neurol. Res. 31, 940–946 (2009).

    PubMed  Google Scholar 

  75. Wang, Y. et al. Quantification of increased cellularity during inflammatory demyelination. Brain 134, 3587–3598 (2011).

    PubMed Central  Google Scholar 

  76. Lemstra, A. W. et al. Microglia activation in sepsis: a case–control study. J. Neuroinflammation 4, 4 (2007).

    PubMed  PubMed Central  Google Scholar 

  77. Kacimi, R., Giffard, R. G. & Yenari, M. A. Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways. J. Inflamm. (Lond.) 8, 7 (2011).

    CAS  Google Scholar 

  78. Hughes, J. L. et al. A microPET study of the regional distribution of [11C]-PK11195 binding following temporary focal cerebral ischemia in the rat. Correlation with post mortem mapping of microglia activation. NeuroImage 59, 2007–2016 (2012).

    CAS  PubMed  Google Scholar 

  79. Doorduin, J. et al. [11C]-DPA-713 and [18F]-DPA-714 as new PET tracers for TSPO: a comparison with [11C]-(R)-PK11195 in a rat model of herpes encephalitis. Mol. Imaging Biol. 11, 386–398 (2009).

    PubMed  PubMed Central  Google Scholar 

  80. Vas, A. et al. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative PET studies with [11C]vinpocetine and [11C]PK11195 in patients. J. Neurol. Sci. 264, 9–17 (2008).

    CAS  PubMed  Google Scholar 

  81. Signoretti, S. et al. N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J. Neurotrauma 18, 977–991 (2001).

    CAS  PubMed  Google Scholar 

  82. Semmler, A. et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J. Neuroinflammation 5, 38 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Rosengarten, B. et al. Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc. Dis. 23, 140–147 (2007).

    CAS  PubMed  Google Scholar 

  84. Hotchkiss, R. S. et al. An in vivo examination of rat brain during sepsis with 31P-NMR spectroscopy. Am. J. Physiol. 257, C1055–C1061 (1989).

    CAS  PubMed  Google Scholar 

  85. Freund, H. R., Muggia-Sullam, M., Peiser, J. & Melamed, E. Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. J. Surg. Res. 38, 267–271 (1985).

    CAS  PubMed  Google Scholar 

  86. Girard, T. D., Pandharipande, P. P. & Ely, E. W. Delirium in the intensive care unit. Crit. Care 3 (Suppl. 3), S3 (2008).

    Google Scholar 

  87. Figueroa-Ramos, M. I., Arroyo-Novoa, C. M., Lee, K. A., Padilla, G. & Puntillo, K. A. Sleep and delirium in ICU patients: a review of mechanisms and manifestations. Intensive Care Med. 35, 781–795 (2009).

    PubMed  Google Scholar 

  88. Campbell, N. et al. The cognitive impact of anticholinergics: a clinical review. Clin. Interv. Aging 4, 225–233 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Sprung, C. L. et al. Amino acid alterations and encephalopathy in the sepsis syndrome. Crit. Care Med. 19, 753–757 (1991).

    CAS  PubMed  Google Scholar 

  90. Kadoi, Y. & Saito, S. An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit. Care Med. 24, 298–305 (1996).

    CAS  PubMed  Google Scholar 

  91. Pascual, B. et al. Decreased carbon-11-flumazenil binding in early Alzheimer's disease. Brain 135, 2817–2825 (2012).

    PubMed  Google Scholar 

  92. Nikolaus, S. et al. Pharmacological challenge and synaptic response—assessing dopaminergic function in the rat striatum with small animal single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Rev. Neurosci. 22, 625–645 (2011).

    CAS  PubMed  Google Scholar 

  93. Pavese, N. & Brooks, D. J. Imaging neurodegeneration in Parkinson's disease. Biochim. Biophys. Acta 1792, 722–729 (2009).

    CAS  PubMed  Google Scholar 

  94. Walker, Z. & Rodda, J. Dopaminergic imaging: clinical utility now and in the future. Int. Psychogeriatr. 2 (Suppl. 2), S32–S40 (2011).

    Google Scholar 

  95. Horti, A. & Wong, D. Radioligands for imaging cerebral nicotinic acetylcholine. PET Clin. 4, 89–100 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Zubieta, J. K., Koeppe, R. A., Mulholland, G. K., Kuhl, D. E. & Frey, K. A. Quantification of muscarinic cholinergic receptors with development and differentiation of tracer delivery from receptor binding. J. Cereb. Blood Flow Metab. 18, 619–631 (1998).

    CAS  PubMed  Google Scholar 

  97. Gründer, G. et al. [18F]Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur. J. Nucl. Med. 28, 1463–1470 (2001).

    PubMed  Google Scholar 

  98. van Gool, W. A., van de Beek, D. & Eikelenboom, P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375, 773–775 (2010).

    CAS  PubMed  Google Scholar 

  99. Monti, M. M. et al. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362, 579–589 (2010).

    CAS  PubMed  Google Scholar 

  100. Kasahara, M. et al. Altered functional connectivity in the motor network after traumatic brain injury. Neurology 75, 168–176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Boly, M. et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann. NY Acad. Sci. 1129, 119–129 (2008).

    CAS  PubMed  Google Scholar 

  102. Stamatakis, E. A., Adapa, R. M., Absalom, A. R. & Menon, D. K. Changes in resting neural connectivity during propofol sedation. PLoS ONE 5, e14224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hattori, N. et al. Acute changes in regional cerebral 18F-FDG kinetics in patients with traumatic brain injury. J. Nucl. Med. 45, 775–783 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

D. K. Menon is supported by a Senior Investigator Award from the National Institute for Health Research (NIHR), UK; and by the Neurosciences Theme of the NIHR Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

D. J. Stubbs researched data for the article. A. K. Yamamoto provided radiological expertise. D. J. Stubbs and D. K. Menon provided substantial contribution to discussion of content, and wrote the article. All authors contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Daniel J. Stubbs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stubbs, D., Yamamoto, A. & Menon, D. Imaging in sepsis-associated encephalopathy—insights and opportunities. Nat Rev Neurol 9, 551–561 (2013). https://doi.org/10.1038/nrneurol.2013.177

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing