Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Axial disability and deep brain stimulation in patients with Parkinson disease

Key Points

  • Some patients with levodopa-responsive axial signs can benefit from deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi)

  • Postural instability and related falls are unlikely to respond to DBS, and can in fact worsen after surgery, particularly after STN procedures

  • STN DBS might provide greater alleviation of axial symptoms than GPi DBS; by contrast, GPi DBS might be associated with a milder long-term decline with regard to these symptoms

  • Worsening of axial disability after DBS is likely to be multifactorial, owing to progression of underlying pathology, adverse effects of surgery and/or stimulation, changes in medications, and comorbidities

  • DBS of the pedunculopontine nucleus area is still an experimental procedure, and further studies on the selection of patients, optimal target and programming are necessary before it can be recommended

Abstract

Axial motor signs—including gait impairment, postural instability and postural abnormalities—are common and debilitating symptoms in patients with advanced Parkinson disease. Dopamine replacement therapy and physiotherapy provide, at best, partial relief from axial motor symptoms. In carefully selected candidates, deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus is an established treatment for 'appendicular' motor signs (limb tremor, bradykinesia and rigidity). However, the effects of DBS on axial signs are much less clear, presumably because motor control of axial and appendicular functions is mediated by different anatomical–functional pathways. Here, we discuss the successes and failures of DBS in managing axial motor signs. We systematically address a series of common clinical questions associated with the preoperative phase, during which patients presenting with prominent axial signs are considered for DBS implantation surgery, and the postoperative phase, in particular, the management of axial motor signs that newly develop as postoperative complications, either acutely or with a delay. We also address the possible merits of new targets—including the pedunculopontine nucleus area, zona incerta and substantia nigra pars reticulata—to specifically alleviate axial symptoms. Supported by a rapidly growing body of evidence, this practically oriented Review aims to support decision-making in the management of axial symptoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified anatomical structures and pathways of subcortical nuclei involved in the basal ganglia circuitry.
Figure 2: Factors contributing to axial disability.
Figure 3: Timescale of gait problems in Parkinson disease.

Similar content being viewed by others

References

  1. Hely, M. A., Morris, J. G., Reid, W. G. & Trafficante, R. Sydney Multicenter Study of Parkinson's disease: non-L-dopa-responsive problems dominate at 15 years. Mov. Disord. 20, 190–199 (2005).

    PubMed  Google Scholar 

  2. Nieuwboer, A. & Giladi, N. Characterizing freezing of gait in Parkinson's disease: models of an episodic phenomenon. Mov. Disord. 28, 1509–1519 (2013).

    PubMed  Google Scholar 

  3. Schoneburg, B., Mancini, M., Horak, F. & Nutt, J. G. Framework for understanding balance dysfunction in Parkinson's disease. Mov. Disord. 28, 1474–1482 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Doherty, K. M. et al. Postural deformities in Parkinson's disease. Lancet Neurol. 10, 538–549 (2011).

    PubMed  Google Scholar 

  5. Fasano, A., Daniele, A. & Albanese, A. Motor and non-motor features in Parkinson's disease treated with deep brain stimulation. Lancet Neurol. 11, 429–442 (2012).

    PubMed  Google Scholar 

  6. Nieuwboer, A. Cueing for freezing of gait in patients with Parkinson's disease: a rehabilitation perspective. Mov. Disord. 23 (Suppl. 2), S475–S481 (2008).

    PubMed  Google Scholar 

  7. Maetzler, W., Nieuwhof, F., Hasmann, S. E. & Bloem, B. R. Emerging therapies for gait disability and balance impairment: promises and pitfalls. Mov. Disord. 28, 1576–1586 (2013).

    PubMed  Google Scholar 

  8. Clissold, B. G., McColl, C. D., Reardon, K. R., Shiff, M. & Kempster, P. A. Longitudinal study of the motor response to levodopa in Parkinson's disease. Mov. Disord. 21, 2116–2121 (2006).

    PubMed  Google Scholar 

  9. Welter, M. L et al. Clinical predictive factors of subthalamic stimulation in Parkinson's disease. Brain 125, 575–583 (2002).

    CAS  PubMed  Google Scholar 

  10. Bakker, M. et al. Effects of stereotactic neurosurgery on postural instability and gait in Parkinson's disease. Mov. Disord. 19, 1092–1099 (2004).

    PubMed  Google Scholar 

  11. Stolze, H. et al. Effects of bilateral subthalamic nucleus stimulation on parkinsonian gait. Neurology 57, 144–146 (2001).

    CAS  PubMed  Google Scholar 

  12. Maurer, C. et al. Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson's disease. Brain 126, 1146–1163 (2003).

    CAS  PubMed  Google Scholar 

  13. Piboolnurak, P. et al. Levodopa response in long-term bilateral subthalamic stimulation for Parkinson's disease. Mov. Disord. 22, 990–997 (2007).

    PubMed  Google Scholar 

  14. Fasano, A. et al. Motor and cognitive outcome in patients with Parkinson's disease 8 years after subthalamic implants. Brain 133, 2664–2676 (2010).

    PubMed  Google Scholar 

  15. Ngoga, D. et al. Deep brain stimulation improves survival in severe Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 85, 17–22 (2014).

    PubMed  Google Scholar 

  16. Johnsen, E. L., Sunde, N., Mogensen, P. H. & Ostergaard, K. MRI verified STN stimulation site—gait improvement and clinical outcome. Eur. J. Neurol. 17, 746–753 (2010).

    CAS  PubMed  Google Scholar 

  17. Visser, J. E. et al. Effect of subthalamic nucleus deep brain stimulation on axial motor control and protective arm responses in Parkinson's disease. Neuroscience 157, 798–812 (2008).

    CAS  PubMed  Google Scholar 

  18. Davis, J. T., Lyons, K. E. & Pahwa, R. Freezing of gait after bilateral subthalamic nucleus stimulation for Parkinson's disease. Clin. Neurol. Neurosurg. 108, 461–464 (2006).

    PubMed  Google Scholar 

  19. Capelle, H. H. et al. Deep brain stimulation for camptocormia in dystonia and Parkinson's disease. J. Neurol. 258, 96–103 (2011).

    PubMed  Google Scholar 

  20. Ruzicka, E., Zarubova, K., Nutt, J. G. & Bloem, B. R. “Silly walks” in Parkinson's disease: unusual presentation of dopaminergic-induced dyskinesias. Mov. Disord. 26, 1782–1784 (2011).

    PubMed  Google Scholar 

  21. Espay, A. J. et al. “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology 78, 454–457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fasano, A. et al. Reversible Pisa syndrome in patients with Parkinson's disease on rasagiline therapy. Mov. Disord. 26, 2578–2580 (2011).

    PubMed  Google Scholar 

  23. Rochester, L., Chastin, S. F., Lord, S., Baker, K. & Burn, D. J. Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson's disease. J. Neurol. 259, 1081–1086 (2012).

    PubMed  Google Scholar 

  24. Faist, M. et al. Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson's disease. Brain 124, 1590–1600 (2001).

    CAS  PubMed  Google Scholar 

  25. Xie, J., Krack, P., Benabid, A. L. & Pollak, P. Effect of bilateral subthalamic nucleus stimulation on parkinsonian gait. J. Neurol. 248, 1068–1072 (2001).

    CAS  PubMed  Google Scholar 

  26. Lubik, S. et al. Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation. J. Neural Transm. 113, 163–173 (2006).

    CAS  PubMed  Google Scholar 

  27. McNeely, M. E. & Earhart, G. M. Medication and subthalamic nucleus deep brain stimulation similarly improve balance and complex gait in Parkinson disease. Parkinsonism Relat. Disord. 19, 86–91 (2013).

    PubMed  Google Scholar 

  28. Robertson, L. T., Horak, F. B., Anderson, V. C., Burchiel, K. J. & Hammerstad, J. P. Assessments of axial motor control during deep brain stimulation in parkinsonian patients. Neurosurgery 48, 544–551 (2001).

    CAS  PubMed  Google Scholar 

  29. Allert, N. et al. Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson's disease. Mov. Disord. 16, 1076–1085 (2001).

    CAS  PubMed  Google Scholar 

  30. Defebvre, L. J. et al. Influence of pallidal stimulation and levodopa on gait and preparatory postural adjustments in Parkinson's disease. Mov. Disord. 17, 76–83 (2002).

    PubMed  Google Scholar 

  31. Piper, M., Abrams, G. M. & Marks, W. J. Jr. Deep brain stimulation for the treatment of Parkinson's disease: overview and impact on gait and mobility. NeuroRehabilitation 20, 223–232 (2005).

    PubMed  Google Scholar 

  32. Crenna, P. et al. Impact of subthalamic nucleus stimulation on the initiation of gait in Parkinson's disease. Exp. Brain Res. 172, 519–532 (2006).

    CAS  PubMed  Google Scholar 

  33. Liu, W. et al. Bilateral subthalamic stimulation improves gait initiation in patients with Parkinson's disease. Gait Posture 23, 492–498 (2006).

    CAS  PubMed  Google Scholar 

  34. Rocchi, L. et al. Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease: laboratory investigation. J. Neurosurg. 117, 1141–1149 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. van Nuenen, B. F. et al. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson's disease. Mov. Disord. 23, 2404–2406 (2008).

    PubMed  Google Scholar 

  36. Rocchi, L., Chiari, L. & Horak, F. B. Effects of deep brain stimulation and levodopa on postural sway in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 73, 267–274 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rocchi, L., Chiari, L., Cappello, A., Gross, A. & Horak, F. B. Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson's disease. Gait Posture 19, 172–183 (2004).

    PubMed  Google Scholar 

  38. Colnat-Coulbois, S. et al. Bilateral subthalamic nucleus stimulation improves balance control in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 76, 780–787 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vrancken, A. M. et al. Effect of bilateral subthalamic nucleus stimulation on balance and finger control in Parkinson's disease. J. Neurol. 252, 1487–1494 (2005).

    CAS  PubMed  Google Scholar 

  40. St George, R. J. et al. The effects of subthalamic and pallidal deep brain stimulation on postural responses in patients with Parkinson disease. J. Neurosurg. 116, 1347–1356 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Visser, J. E. et al. Subthalamic nucleus stimulation and levodopa-resistant postural instability in Parkinson's disease. J. Neurol. 255, 205–210 (2008).

    PubMed  Google Scholar 

  42. Roberts-Warrior, D. et al. Postural control in Parkinson's disease after unilateral posteroventral pallidotomy. Brain 123, 2141–2149 (2000).

    PubMed  Google Scholar 

  43. Nilsson, M. H., Rehncrona, S. & Jarnlo, G. B. Fear of falling and falls in people with Parkinson's disease treated with deep brain stimulation in the subthalamic nuclei. Acta Neurol. Scand. 123, 424–429 (2011).

    CAS  PubMed  Google Scholar 

  44. Weaver, F. M. et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301, 63–73 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Follett, K. A. et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 362, 2077–2091 (2010).

    CAS  PubMed  Google Scholar 

  46. Okun, M. S. et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson's disease: an open-label randomised controlled trial. Lancet Neurol. 11, 141–149 (2012).

    Google Scholar 

  47. Asahi, T. et al. Bilateral subthalamic deep brain stimulation for camptocormia associated with Parkinson's disease. Stereotact. Funct. Neurosurg. 89, 173–177 (2011).

    PubMed  Google Scholar 

  48. Umemura, A., Oka, Y., Ohkita, K., Yamawaki, T. & Yamada, K. Effect of subthalamic deep brain stimulation on postural abnormality in Parkinson disease. J. Neurosurg. 112, 1283–1288 (2010).

    PubMed  Google Scholar 

  49. Shih, L. C., Vanderhorst, V. G., Lozano, A. M., Hamani, C. & Moro, E. Improvement of Pisa syndrome with contralateral pedunculopontine stimulation. Mov. Disord. 28, 555–556 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. The Deep-Brain Stimulation for Parkinson's Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N. Engl. J. Med. 345, 956–963 (2001).

  51. Anderson, V. C., Burchiel, K. J., Hogarth, P., Favre, J. & Hammerstad, J. P. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch. Neurol. 62, 554–560 (2005).

    PubMed  Google Scholar 

  52. Odekerken, V. J. et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 12, 37–44 (2013).

    PubMed  Google Scholar 

  53. Stein, J. F. & Aziz, T. Z. Basal ganglia output to the PPN, a commentary. Exp. Neurol. 233, 745–746 (2012).

    PubMed  Google Scholar 

  54. Volkmann, J. et al. Long-term results of bilateral pallidal stimulation in Parkinson's disease. Ann. Neurol. 55, 871–875 (2004).

    PubMed  Google Scholar 

  55. Allert, N., Lehrke, R., Sturm, V. & Volkmann, J. Secondary failure after ten years of pallidal neurostimulation in a patient with advanced Parkinson's disease. J. Neural Transm. 117, 349–351 (2010).

    PubMed  Google Scholar 

  56. Hariz, M. I., Rehncrona, S., Quinn, N. P., Speelman, J. D. & Wensing, C. Multicenter study on deep brain stimulation in Parkinson's disease: an independent assessment of reported adverse events at 4 years. Mov. Disord. 23, 416–421 (2008).

    PubMed  Google Scholar 

  57. St George, R. J., Nutt, J. G., Burchiel, K. J. & Horak, F. B. A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology 75, 1292–1299 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, J., Wang, Z. I., Baker, K. B. & Vitek, J. L. Effect of globus pallidus internus stimulation on neuronal activity in the pedunculopontine tegmental nucleus in the primate model of Parkinson's disease. Exp. Neurol. 233, 575–580 (2012).

    PubMed  Google Scholar 

  59. Ferraye, M. U. et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson's disease. Brain 133, 205–214 (2010).

    CAS  PubMed  Google Scholar 

  60. Moro, E. et al. Unilateral pedunculopontine stimulation improves falls in Parkinson's disease. Brain 133, 215–224 (2010).

    PubMed  Google Scholar 

  61. Thevathasan, W. et al. The impact of low-frequency stimulation of the pedunculopontine nucleus region on reaction time in parkinsonism. J. Neurol. Neurosurg. Psychiatry 81, 1099–1104 (2010).

    PubMed  Google Scholar 

  62. Khan, S. et al. Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson's disease. Br. J. Neurosurg. 26, 722–725 (2012).

    PubMed  Google Scholar 

  63. Thevathasan, W. et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 135, 148–160 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Khan, S. et al. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease. Br. J. Neurosurg. 25, 273–280 (2011).

    PubMed  Google Scholar 

  65. Chastan, N. et al. Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson's disease. Brain 132, 172–184 (2009).

    CAS  PubMed  Google Scholar 

  66. Weiss, D. et al. Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial. Brain 136, 2098–2108 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Castrioto, A. et al. The dominant-STN phenomenon in bilateral STN DBS for Parkinson's disease. Neurobiol. Dis. 41, 131–137 (2011).

    PubMed  Google Scholar 

  68. Lam, S., Moro, E., Poon, Y. Y., Lozano, A. M. & Fasano, A. Does dominant pedunculopontine nucleus exist? Brain http://dx.doi.org/10.1093/brain/awu225.

  69. Okun, M. S. et al. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann. Neurol. 65, 586–595 (2009).

    PubMed  PubMed Central  Google Scholar 

  70. Taba, H. A. et al. A closer look at unilateral versus bilateral deep brain stimulation: results of the National Institutes of Health COMPARE cohort. J. Neurosurg. 113, 1224–1229 (2010).

    PubMed  Google Scholar 

  71. Thevathasan, W. et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain 135, 1446–1454 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Brun, Y. et al. Does unilateral basal ganglia activity functionally influence the contralateral side? What we can learn from STN stimulation in patients with Parkinson's disease. J. Neurophysiol. 108, 1575–1583 (2012).

    PubMed  Google Scholar 

  73. Bastian, A. J., Kelly, V. E., Revilla, F. J., Perlmutter, J. S. & Mink, J. W. Different effects of unilateral versus bilateral subthalamic nucleus stimulation on walking and reaching in Parkinson's disease. Mov. Disord. 18, 1000–1007 (2003).

    PubMed  Google Scholar 

  74. Alberts, J. L., Hass, C. J., Vitek, J. L. & Okun, M. S. Are two leads always better than one: an emerging case for unilateral subthalamic deep brain stimulation in Parkinson's disease. Exp. Neurol. 214, 1–5 (2008).

    PubMed  PubMed Central  Google Scholar 

  75. Tabbal, S. D. et al. Unilateral subthalamic nucleus stimulation has a measurable ipsilateral effect on rigidity and bradykinesia in Parkinson disease. Exp. Neurol. 211, 234–242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleiner-Fisman, G. et al. Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov. Disord. 21 (Suppl. 14), S290–S304 (2006).

    PubMed  Google Scholar 

  77. Schuepbach, W. M. et al. Neurostimulation for Parkinson's disease with early motor complications. N. Engl. J. Med. 368, 610–622 (2013).

    CAS  PubMed  Google Scholar 

  78. Umemura, A. et al. Predictive factors affecting early deterioration of axial symptoms after subthalamic nucleus stimulation in Parkinson's disease. Parkinsonism Relat. Disord. 16, 582–584 (2010).

    PubMed  Google Scholar 

  79. Schuepbach, W. M. et al. Neurosurgery at an earlier stage of Parkinson disease: a randomized, controlled trial. Neurology 68, 267–271 (2007).

    Google Scholar 

  80. deSouza, R. M., Moro, E., Lang, A. E. & Schapira, A. H. Timing of deep brain stimulation in Parkinson disease: a need for reappraisal? Ann. Neurol. 73, 565–575 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Vercruysse, S. et al. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease: a prospective controlled study. J. Neurol. Neurosurg. Psychiatry 85, 871–877 (2014).

    CAS  PubMed  Google Scholar 

  82. Ferraye, M. U. et al. Effects of subthalamic nucleus stimulation and levodopa on freezing of gait in Parkinson disease. Neurology 70, 1431–1437 (2008).

    CAS  PubMed  Google Scholar 

  83. Gervais-Bernard, H. et al. Bilateral subthalamic nucleus stimulation in advanced Parkinson's disease: five year follow-up. J. Neurol. 256, 225–233 (2009).

    PubMed  Google Scholar 

  84. Perez-Lloret, S. et al. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol. 71, 884–890 (2014).

    PubMed  Google Scholar 

  85. Tommasi, G. et al. Freezing and hypokinesia of gait induced by stimulation of the subthalamic region. J. Neurol. Sci. 258, 99–103 (2007).

    PubMed  Google Scholar 

  86. Moreau, C. et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 71, 80–84 (2008).

    CAS  PubMed  Google Scholar 

  87. Maks, C. B., Butson, C. R., Walter, B. L., Vitek, J. L. & McIntyre, C. C. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J. Neurol. Neurosurg. Psychiatry 80, 659–666 (2009).

    CAS  PubMed  Google Scholar 

  88. Xie, T., Kang, U. J. & Warnke, P. Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 83, 1015–1017 (2012).

    PubMed  Google Scholar 

  89. Plotnik, M., Giladi, N. & Hausdorff, J. M. Bilateral coordination of walking and freezing of gait in Parkinson's disease. Eur. J. Neurosci. 27, 1999–2006 (2008).

    PubMed  Google Scholar 

  90. Fasano, A. et al. Modulation of gait coordination by subthalamic stimulation improves freezing of gait. Mov. Disord. 26, 844–851 (2011).

    PubMed  Google Scholar 

  91. Merello, M. Subthalamic stimulation contralateral to a previous pallidotomy: an erroneous indication? Mov. Disord. 14, 890 (1999).

    CAS  PubMed  Google Scholar 

  92. Su, P. C. & Tseng, H. M. Gait freezing and falling related to subthalamic stimulation in patients with a previous pallidotomy. Mov. Disord. 16, 376–377 (2001).

    CAS  PubMed  Google Scholar 

  93. Guehl, D. et al. Side-effects of subthalamic stimulation in Parkinson's disease: clinical evolution and predictive factors. Eur. J. Neurol. 13, 963–971 (2006).

    CAS  PubMed  Google Scholar 

  94. DeLong, M. R. et al. Effect of advancing age on outcomes of deep brain stimulation for Parkinson disease. JAMA Neurol. 71, 1290–1295 (2014).

    PubMed  Google Scholar 

  95. Russmann, H. et al. Subthalamic nucleus deep brain stimulation in Parkinson disease patients over age 70 years. Neurology 63, 1952–1954 (2004).

    CAS  PubMed  Google Scholar 

  96. Merola, A. et al. Subthalamic nucleus deep brain stimulation outcome in young onset Parkinson's disease: a role for age at disease onset? J. Neurol. Neurosurg. Psychiatry 83, 251–257 (2011).

    PubMed  Google Scholar 

  97. Tagliati, M., Pourfar, M. H. & Alterman, R. L. Subthalamic nucleus deep brain stimulation in Parkinson disease patients over age 70 years. Neurology 65, 179–180 (2005).

    PubMed  Google Scholar 

  98. Castrioto, A. et al. Ten-year follow-up of bilateral subthalamic stimulation in advanced Parkinson's disease: a blinded evaluation. Mov. Disord. 26 (Suppl. 2), S68 (2011).

    Google Scholar 

  99. Moro, E. et al. Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease. Mov. Disord. 25, 578–586 (2010).

    PubMed  Google Scholar 

  100. Hamani, C., Richter, E., Schwalb, J. M. & Lozano, A. M. Bilateral subthalamic nucleus stimulation for Parkinson's disease: a systematic review of the clinical literature. Neurosurgery 56, 1313–1321 (2005).

    PubMed  Google Scholar 

  101. Rodriguez-Oroz, M. C., Moro, E. & Krack, P. Long-term outcomes of surgical therapies for Parkinson's disease. Mov. Disord. 27, 1718–1728 (2012).

    PubMed  Google Scholar 

  102. Krack, P. et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 349, 1925–1934 (2003).

    CAS  PubMed  Google Scholar 

  103. Lang, A. E. & Obeso, J. A. Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol. 3, 309–316 (2004).

    PubMed  Google Scholar 

  104. Karachi, C. et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120, 2745–2754 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Grabli, D. et al. Gait disorders in parkinsonian monkeys with pedunculopontine nucleus lesions: a tale of two systems. J. Neurosci. 33, 11986–11993 (2013).

    CAS  PubMed  Google Scholar 

  106. Acharya, H. J., Bouchard, T. P., Emery, D. J. & Camicioli, R. M. Axial signs and magnetic resonance imaging correlates in Parkinson's disease. Can. J. Neurol. Sci. 34, 56–61 (2007).

    PubMed  Google Scholar 

  107. Blin, J. et al. Does ageing aggravate parkinsonian disability? J. Neurol. Neurosurg. Psychiatry 54, 780–782 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Schuepbach, W. M. et al. Stimulation of the subthalamic nucleus in Parkinson's disease: a 5 year follow up. J. Neurol. Neurosurg. Psychiatry 76, 1640–1644 (2005).

    Google Scholar 

  109. Moro, E., Esselink, R. J., Benabid, A. L. & Pollak, P. Response to levodopa in parkinsonian patients with bilateral subthalamic nucleus stimulation. Brain 125, 2408–2417 (2002).

    PubMed  Google Scholar 

  110. Simonin, C. et al. Reduced levodopa-induced complications after 5 years of subthalamic stimulation in Parkinson's disease: a second honeymoon. J. Neurol. 256, 1736–1741 (2009).

    PubMed  Google Scholar 

  111. van de Warrenburg, B. P., Bhatia, K. P. & Quinn, N. P. Pisa syndrome after unilateral pallidotomy in Parkinson's disease: an unrecognised, delayed adverse event? J. Neurol. Neurosurg. Psychiatry 78, 329–330 (2007).

    PubMed  PubMed Central  Google Scholar 

  112. Spanaki, C., Zafeiris, S. & Plaitakis, A. Levodopa-aggravated lateral flexion of the neck and trunk as a delayed phenomenon of unilateral pallidotomy. Mov. Disord. 25, 655–656 (2010).

    PubMed  Google Scholar 

  113. Giladi, N. & Hausdorff, J. M. The role of mental function in the pathogenesis of freezing of gait in Parkinson's disease. J. Neurol. Sci. 248, 173–176 (2006).

    PubMed  Google Scholar 

  114. Morris, M., Iansek, R., Smithson, F. & Huxham, F. Postural instability in Parkinson's disease: a comparison with and without a concurrent task. Gait Posture 12, 205–216 (2000).

    CAS  PubMed  Google Scholar 

  115. Witt, K. et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. Lancet Neurol. 7, 605–614 (2008).

    PubMed  Google Scholar 

  116. Zangaglia, R. et al. Deep brain stimulation and cognitive functions in Parkinson's disease: a three-year controlled study. Mov. Disord. 24, 1621–1628 (2009).

    PubMed  Google Scholar 

  117. Matison, R., Mayeux, R., Rosen, J. & Fahn, S. “Tip-of-the-tongue” phenomenon in Parkinson disease. Neurology 32, 567–570 (1982).

    CAS  PubMed  Google Scholar 

  118. Wojtecki, L. S. et al. Frequency-dependent reciprocal modulation of verbal fluency and motor functions in subthalamic deep brain stimulation. Arch. Neurol. 63, 1273–1276 (2006).

    PubMed  Google Scholar 

  119. Brozova, H., Barnaure, I., Alterman, R. L. & Tagliati, M. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 72, 770 (2009).

    PubMed  Google Scholar 

  120. Sidiropoulos, C. et al. Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson's disease. J. Neurol. 260, 2306–2011 (2013).

    CAS  PubMed  Google Scholar 

  121. Farris, S. & Giroux, M. Retrospective review of factors leading to dissatisfaction with subthalamic nucleus deep brain stimulation during long-term management. Surg. Neurol. Int. 4, 69 (2013).

    PubMed  PubMed Central  Google Scholar 

  122. Moro, E., Poon, Y. Y., Lozano, A. M., Saint-Cyr, J. A. & Lang, A. E. Subthalamic nucleus stimulation: improvements in outcome with reprogramming. Arch. Neurol. 63, 1266–1272 (2006).

    PubMed  Google Scholar 

  123. Herzog, J. et al. Stimulation of subthalamic fibre tracts reduces dyskinesias in STN-DBS. Mov. Disord. 22, 679–684 (2007).

    CAS  PubMed  Google Scholar 

  124. Mazzone, P. et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson's disease. Neuroreport 16, 1877–1881 (2005).

    PubMed  Google Scholar 

  125. Plaha, P. & Gill, S. S. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson's disease. Neuroreport 16, 1883–1887 (2005).

    PubMed  Google Scholar 

  126. Stefani, A. et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 130, 1596–1607 (2007).

    PubMed  Google Scholar 

  127. Costa, A. et al. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson's disease. Parkinsonism Relat. Disord. 16, 64–67 (2010).

    PubMed  Google Scholar 

  128. Stefani, A. et al. Deep brain stimulation of pedunculopontine tegmental nucleus (PPTg) promotes cognitive and metabolic changes: a target-specific effect or response to a low-frequency pattern of stimulation? Clin. EEG Neurosci. 41, 82–86 (2010).

    CAS  PubMed  Google Scholar 

  129. Alam, M., Schwabe, K. & Krauss, J. K. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134, 11–23 (2011).

    PubMed  Google Scholar 

  130. Alam, M., Schwabe, K. & Krauss, J. K. Reply: The cuneiform nucleus may be involved in the regulation of skeletal muscle tone by motor pathway: a virally mediated trans-synaptic tracing study in surgically sympathectomized mice. Brain 136, e252 (2013).

    PubMed  Google Scholar 

  131. Rolland, A. S., Karachi, C., Muriel, M. P., Hirsch, E. C. & Francois, C. Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Mov. Disord. 26, 1648–1656 (2011).

    PubMed  Google Scholar 

  132. Schrader, C. et al. Effects of pedunculopontine area and pallidal DBS on gait ignition in Parkinson's disease. Brain Stimul. 6, 856–859 (2013).

    PubMed  Google Scholar 

  133. Tanner, C. M. A second honeymoon for Parkinson's disease? N. Engl. J. Med. 368, 675–676 (2013).

    CAS  PubMed  Google Scholar 

  134. Zrinzo, L. et al. Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain 131, 1588–1598 (2008).

    PubMed  Google Scholar 

  135. Chan, H. F. et al. Amantadine improves gait in PD patients with STN stimulation. Parkinsonism Relat. Disord. 19, 316–319 (2013).

    PubMed  Google Scholar 

  136. Moreau, C. et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson's disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol. 11, 589–596 (2012).

    CAS  PubMed  Google Scholar 

  137. Rascol, O. et al. Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 365, 947–954 (2005).

    CAS  PubMed  Google Scholar 

  138. Baba, Y. et al. Anti-cholinergics for axial symptoms in Parkinson's disease after subthalamic stimulation. Clin. Neurol. Neurosurg. 114, 1308–1311 (2012).

    PubMed  Google Scholar 

  139. Bohnen, N. I. et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73, 1670–1676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chung, K. A., Lobb, B. M., Nutt, J. G. & Horak, F. B. Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 75, 1263–1269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mazzone, P., Sposato, S., Insola, A. & Scarnati, E. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J. Neural. Transm. 118, 1431–1451 (2011).

    PubMed  Google Scholar 

  142. Ostrem, J. L., Christine, C. W., Glass, G. A., Schrock, L. E. & Starr, P. A. Pedunculopontine nucleus deep brain stimulation in a patient with primary progressive freezing gait disorder. Stereotact. Funct. Neurosurg. 88, 51–55 (2010).

    PubMed  Google Scholar 

  143. Zrinzo, L. & Zrinzo, L. V. Surgical anatomy of the pedunculopontine and peripeduncular nuclei. Br. J. Neurosurg. 22 (Suppl. 1), S19–S24 (2008).

    PubMed  Google Scholar 

  144. Piallat, B. et al. Gait is associated with an increase in tonic firing of the sub-cuneiform nucleus neurons. Neuroscience 158, 1201–1205 (2009).

    CAS  PubMed  Google Scholar 

  145. Hamani, C., Moro, E. & Lozano, A. M. The pedunculopontine nucleus as a target for deep brain stimulation. J. Neural Transm. 118, 1461–1468 (2010).

    PubMed  Google Scholar 

  146. Ferraye, M. U. et al. Subthalamic nucleus versus pedunculopontine nucleus stimulation in Parkinson disease: synergy or antagonism? J. Neural Transm. 118, 1469–1475 (2011).

    CAS  PubMed  Google Scholar 

  147. Drouot, X. et al. Functional recovery in a primate model of Parkinson's disease following motor cortex stimulation. Neuron 44, 769–778 (2004).

    CAS  PubMed  Google Scholar 

  148. Fasano, A. et al. High frequency extradural motor cortex stimulation transiently improves axial symptoms in a patient with Parkinson's disease. Mov. Disord. 23, 1916–1919 (2008).

    PubMed  Google Scholar 

  149. Tani, N. et al. Motor cortex stimulation for levodopa-resistant akinesia: case report. Mov. Disord. 22, 1645–1649 (2007).

    PubMed  Google Scholar 

  150. Moro, E. et al. Unilateral subdural motor cortex stimulation improves essential tremor but not Parkinson's disease. Brain 134, 2096–2105 (2011).

    PubMed  Google Scholar 

  151. Bentivoglio, A. R. et al. Unilateral extradural motor cortex stimulation is safe and improves Parkinson disease at 1 year. Neurosurgery 71, 815–825 (2012).

    PubMed  Google Scholar 

  152. Fuentes, R., Petersson, P., Siesser, W. B., Caron, M. G. & Nicolelis, M. A. Spinal cord stimulation restores locomotion in animal models of Parkinson's disease. Science 323, 1578–1582 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Nicolelis, M. A., Fuentes, R., Petersson, P., Thevathasan, W. & Brown, P. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology 75, 1484 (2010).

    PubMed  Google Scholar 

  154. Thevathasan, W. et al. Spinal cord stimulation failed to relieve akinesia or restore locomotion in Parkinson disease. Neurology 74, 1325–1327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Agari, T. & Date, I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson's disease. Neurol. Med. Chir. (Tokyo) 52, 470–474 (2012).

    Google Scholar 

  156. Keus, S. H., Bloem, B. R., Hendriks, E. J., Bredero-Cohen, A. B. & Munneke, M. Evidence-based analysis of physical therapy in Parkinson's disease with recommendations for practice and research. Mov. Disord. 22, 451–460 (2007).

    PubMed  Google Scholar 

  157. Tomlinson, C. L. et al. Physiotherapy intervention in Parkinson's disease: systematic review and meta-analysis. BMJ 345, e5004 (2012).

    PubMed  PubMed Central  Google Scholar 

  158. Berardelli, A., Rothwell, J. C., Thompson, P. D. & Hallett, M. Pathophysiology of bradykinesia in Parkinson's disease. Brain 124, 2131–2146 (2001).

    CAS  PubMed  Google Scholar 

  159. Arias, P., Vivas, J., Grieve, K. L. & Cudeiro, J. Controlled trial on the effect of 10 days low-frequency repetitive transcranial magnetic stimulation (rTMS) on motor signs in Parkinson's disease. Mov. Disord. 25, 1830–1838 (2010).

    PubMed  Google Scholar 

  160. Benninger, D. H. et al. Transcranial direct current stimulation for the treatment of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 81, 1105–1111 (2010).

    PubMed  PubMed Central  Google Scholar 

  161. Nosko, D. et al. Low-frequency versus high-frequency stimulation of the pedunculopontine nucleus area in Parkinson's disease: a randomised controlled trial. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2013-307511.

  162. Volkmann, J., Moro, E. & Pahwa, R. Basic algorithms for the programming of deep brain stimulation in Parkinson's disease. Mov. Disord. 21 (Suppl. 14), S284–S289 (2006).

    PubMed  Google Scholar 

  163. Herzog, J. et al. Most effective stimulation site in subthalamic deep brain stimulation for Parkinson's disease. Mov. Disord. 19, 1050–1054 (2004).

    PubMed  Google Scholar 

  164. McNeely, M. E. et al. Effects of deep brain stimulation of dorsal versus ventral subthalamic nucleus regions on gait and balance in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 82, 1250–1255 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Potter-Nerger, M., Reich, M. M., Colebatch, J. G., Deuschl, G. & Volkmann, J. Differential effect of dopa and subthalamic stimulation on vestibular activity in Parkinson's disease. Mov. Disord. 27, 1268–1275 (2012).

    PubMed  Google Scholar 

  166. Koss, A. M., Alterman, R. L., Tagliati, M. & Shils, J. L. Calculating total electrical energy delivered by deep brain stimulation systems. Ann. Neurol. 58, 168 (2005).

    PubMed  Google Scholar 

  167. Ricchi, V. et al. Transient effects of 80 Hz stimulation on gait in STN DBS treated PD patients: a 15 months follow-up study. Brain Stimul. 5, 388–392 (2012).

    PubMed  Google Scholar 

  168. Stegemoller, E. L. et al. Selective use of low frequency stimulation in Parkinson's disease based on presence of tremor. NeuroRehabilitation 33, 305–312 (2013).

    PubMed  Google Scholar 

  169. Temperli, P. et al. How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 60, 78–81 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.C.A. has received support from CAPES Foundation, Ministry of Education of Brazil, Brasília-DF 07.040-020, Brazil (proc. 10.139-13-3). B.B. has been supported by the Stichting ParkinsonFonds (SPF) and the National Parkinson Foundation (NPF).

Author information

Authors and Affiliations

Authors

Contributions

A.F. and C.C.A. researched data for the article and wrote the text. A.F., J.K.K., C.R.H. and B.R.B. reviewed and/or edited the manuscript before submission, and J.K.K. and B.R.B. provided substantial contributions to discussion of the content.

Corresponding author

Correspondence to Alfonso Fasano.

Ethics declarations

Competing interests

A.F. has received speaker's fees and research funds from Boston Scientific and Medtronic. J.K.K. is a consultant to Medtronic and has received speaker's fees from St. Jude. C.R.H. has received consultant and speaker fees from Medtronic and research funds from Medtronic and St. Jude. C.C.A. and B.R.B. declare no competing interests.

Supplementary information

Supplementary Table 1

Motor effects of STN and GPi stimulation on axial symptoms in controlled (all available studies) and uncontrolled open-label studies (with a follow-up longer than 5 and 3 years, respectively) (DOC 195 kb)

Supplementary Table 2

Effect of levodopa and DBS on specific gait parameters in gait analysis studies performed in PD patients with bilateral implant targeting STN or GPi (DOC 192 kb)

Supplementary Table 3

Published outcomes of patients with Parkinson disease and camptocormia who received deep brain stimulation of the STN or GPi (DOC 120 kb)

Supplementary Table 4

Available trials of PPN DBS in PD cohorts (DOC 126 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasano, A., Aquino, C., Krauss, J. et al. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol 11, 98–110 (2015). https://doi.org/10.1038/nrneurol.2014.252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing