Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Body fluid biomarkers for multiple sclerosis—the long road to clinical application

Key Points

  • Blood and cerebrospinal fluid biomarkers can assist early diagnosis of multiple sclerosis (MS) and help predict conversion from clinically isolated syndrome to MS

  • Body fluid biomarkers are also essential in differential diagnosis of neuromyelitis optica

  • Prognostic evaluation of MS is currently challenging, but novel axonal damage markers, including neurofilments and N-acetylaspartate, could be implemented in biomarker panels to improve their predictive power

  • Despite rapidly increasing number of disease-modifying treatments, few body fluid biomarkers are available to monitor treatment response and predict adverse effects

  • No clinically implemented biomarkers are available for MS subtyping and staging; IgM oligoclonal bands and microRNAs are the most promising candidates

  • International collaboration for standardized assays and study protocols, as well as to recruit sufficiently large cohorts, can facilitate biomarker development

Abstract

There is a strong unmet clinical need for objective body fluid biomarkers to assist early diagnosis and estimate long-term prognosis, monitor treatment response and predict potential adverse effects in multiple sclerosis (MS). Here, we review recent studies (focusing on 2012 to early 2015) on body fluid markers in MS from the perspective of their clinical utility. Because the first step towards clinical implementation of a newly discovered biomarker is independent replication, we focus on biomarkers that have been validated in at least two independent cohorts. We also discuss recent data challenging earlier findings, and biomarkers for which new clinical uses are suggested. For early MS diagnosis and prediction of conversion from clinically isolated syndrome to MS, several new B-cell-associated candidate blood biomarkers have emerged. For prognosis, several novel axonal damage markers should be adopted to biomarker panels. The number of disease-modifying treatments for MS has increased sharply, but biomarkers for treatment response monitoring and adverse effect prediction are scarce, and markers for subtyping and staging of MS are still lacking. In view of the availability and implementation of several standardized protocols to optimize biomarker studies, we expect biomarker development for MS to be improved and accelerated, with clinical implementation in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomarkers associated with different clinical phases in MS.
Figure 2: Schematic representation of the process of biomarker development.

Similar content being viewed by others

References

  1. Stangel, M. et al. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat. Rev. Neurol. 9, 267–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Sawcer, S., Franklin, R. J. & Ban, M. Multiple sclerosis genetics. Lancet. Neurol. 13, 700–709 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Comabella, M. & Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet. Neurol. 13, 113–126 (2014).

    Article  PubMed  Google Scholar 

  4. Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lublin, F. D. New multiple sclerosis phenotypic classification. Eur. J. Neurol. 72, 1–5 (2014).

    Article  Google Scholar 

  6. Kuhle, J. et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult. Scler. 21, 1013–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dobson, R., Ramagopalan, S., Davis, A. & Giovannoni, G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J. Neurol. Neurosurg. Psychiatry 84, 909–914 (2013).

    Article  PubMed  Google Scholar 

  9. Petzold, A. Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J. Neuroimmunol. 262, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Leone, M. A. et al. Association of genetic markers with CSF oligoclonal bands in multiple sclerosis patients. PLoS ONE 8, e64408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tintoré, M. et al. Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology 70, 1079–1083 (2008).

    Article  PubMed  Google Scholar 

  12. Villar, L. M. et al. Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology 59, 555–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ferraro, D. et al. Cerebrospinal fluid oligoclonal IgM bands predict early conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome. J. Neuroimmunol. 257, 76–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Villar, L. M. et al. Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J. Clin. Invest. 115, 187–194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villar, L. M. Influence of oligoclonal IgM specificity in multiple sclerosis disease course. Mult. Scler. 14, 183–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Espiño, M. et al. Assessment of the reproducibility of oligoclonal IgM band detection for its application in daily clinical practice. Clin. Chim. Acta 438, 67–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Brettschneider, J. et al. IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS ONE 4, e7638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felgenhauer, K. & Reiber, H. The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin. Investig. 70, 28–37 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Persson, L. et al. Elevated antibody reactivity to measles virus NCORE protein among patients with multiple sclerosis and their healthy siblings with intrathecal oligoclonal immunoglobulin G production. J. Clin. Virol. 61, 107–112 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Rosche, B. et al. Measles IgG antibody index correlates with T2 lesion load on MRI in patients with early multiple sclerosis. PLoS ONE 7, e28094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jarius, S. et al. The intrathecal, polyspecific antiviral immune response: specific for MS or a general marker of CNS autoimmunity? J. Neurol. Sci. 280, 98–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Jarius, S. et al. Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 79, 1134–1136 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Brecht, I. et al. Intrathecal, polyspecific antiviral immune response in oligoclonal band negative multiple sclerosis. PLoS ONE 7, e40431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaplan, B., Aizenbud, B. M., Golderman, S., Yaskariev, R. & Sela, B. A. Free light chain monomers in the diagnosis of multiple sclerosis. J. Neuroimmunol. 229, 263–271 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Kaplan, B. et al. Free light chain monomer-dimer patterns in the diagnosis of multiple sclerosis. J. Immunol. Methods 390, 74–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Senel, M. et al. Cerebrospinal fluid immunoglobulin kappa light chain in clinically isolated syndrome and multiple sclerosis. PLoS ONE 9, e88680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Desplat-Jégo, S. et al. Quantification of immunoglobulin free light chains in cerebrospinal fluid by nephelometry. J. Clin. Immunol. 25, 338–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Presslauer, S., Milosavljevic, D., Brücke, T., Bayer, P. & Hübl, W. Elevated levels of kappa free light chains in CSF support the diagnosis of multiple sclerosis. J. Neurol. 255, 1508–1514 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Goffette, S., Schluep, M., Henry, H., Duprez, T. & Sindic, C. J. Detection of oligoclonal free kappa chains in the absence of oligoclonal IgG in the CSF of patients with suspected multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 75, 308–310 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Presslauer, S. et al. Kappa free light chains: diagnostic and prognostic relevance in MS and CIS. PLoS ONE 9, e89945 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Srivastava, R. et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N. Engl. J. Med. 367, 115–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kraus, V. et al. Potassium channel KIR4.1-specific antibodies in children with acquired demyelinating CNS disease. Neurology 82, 470–473 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Nerrant, E. et al. Lack of confirmation of anti-inward rectifying potassium channel 4.1 antibodies as reliable markers of multiple sclerosis. Mult. Scler. 20, 1699–1703 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Brickshawana, A., et al. Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study. Lancet Neurol. 13, 795–806 (2013).

    Article  CAS  Google Scholar 

  35. Reindl, M., Di Pauli, F., Rostásy, K. & Berger, T. The spectrum of MOG autoantibody-associated demyelinating diseases. Nat. Rev. Neurol. 9, 455–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Aktas, O. Collateral benefit: the comeback of MOG antibodies as a biomarker in neurological practice. J. Neurol. Neurosurg. Psychiatry 86, 243 (2015).

    Article  PubMed  Google Scholar 

  37. Findling, O. et al. Antimyelin antibodies as predictors of disability after clinically isolated syndrome. Int. J. Neurosci. 124, 567–572 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Krumbholz, M. et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 upregulation is differentially linked to CNS immune cell recruitment. Brain 129, 200–211 (2006).

    Article  PubMed  Google Scholar 

  39. Sellebjerg, F. et al. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS. Neurology 73, 2003–2010 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez, E. et al. CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult. Scler. 19, 1204–1208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khademi, M. et al. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult. Scler. 17, 335–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Khademi, M. et al. Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: a reflection by cerebrospinal fluid biomarkers. PLoS ONE 8, e63172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brettschneider, J. et al. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS). PLoS ONE 5, e11986 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Disanto, G., Morahan, J., Barnett, M., Giovannoni, G. & Ramagopalan, S. The evidence for a role of B cells in multiple sclerosis. Neurology 78, 823–832 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Libreros, S., Garcia-Areas, R. & Iragavarapu-Charyulu, V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol. Res. 57, 99–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, I.-A., Kamba, A., Low, D. & Mizoguchi, E. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease. World J. Gastroenterol. 20, 1127–1138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bonneh-Barkay, D., Wang, G., Starkey, A., Hamilton, R. L. & Wiley, C. A. In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J. Neuroinflammation 7, 34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hinsinger, G. et al. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult. Scler. http://dx.doi.org/10.1177/1352458514561906.

  49. Correale, J. & Fiol, M. Chitinase effects on immune cell response in neuromyelitis optica and multiple sclerosis. Mult. Scler. 17, 521–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Comabella, M. et al. Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 133, 1082–1093 (2010).

    Article  PubMed  Google Scholar 

  51. Canto, E. et al. Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain 138, 918–931 (2015).

    Article  PubMed  Google Scholar 

  52. Cox, M. B. et al. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS ONE 5, e12132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keller, A. et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult. Scler. 20, 295–303 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Siegel, S. R., Mackenzie, J., Chaplin, G., Jablonski, N. G. & Griffiths, L. Circulating microRNAs involved in multiple sclerosis. Mol. Biol. Rep. 39, 6219–6225 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Keller, A. et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS ONE 4, e7440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Junker, A. et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132, 3342–3352 (2009).

    Article  PubMed  Google Scholar 

  57. Teunissen, C. E., Dijkstra, C. & Polman, C. Biological markers in CSF and blood for axonal degeneration. 4, 32–41 (2005).

  58. Norgren, N., Rosengren, L. & Stigbrand, T. Elevated neurofilament levels in neurological diseases. Brain Res. 987, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Norgren, N. et al. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63, 1586–1590 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Kuhle, J. et al. Serum neurofilament light chain is a biomarker of human spinal cord injury severity and outcome. J. Neurol. Neurosurg. Psychiatry 86, 273–279 (2015).

    Article  PubMed  Google Scholar 

  61. Teunissen, C. E. et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72, 1322–1329 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Fialová, L. et al. Serum and cerebrospinal fluid light neurofilaments and antibodies against them in clinically isolated syndrome and multiple sclerosis. J. Neuroimmunol. 262, 113–120 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kuhle, J. et al. A comparative study of CSF neurofilament light and heavy chain protein in MS. Mult. Scler. 19, 1597–1603 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Khalil, M. et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult. Scler. 19, 436–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fialová, L., Bartos, A., Švarcová, J., Zimova, D. & Kotoucova, J. Serum and cerebrospinal fluid heavy neurofilaments and antibodies against them in early multiple sclerosis. J. Neuroimmunol. 259, 81–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Leoni, V. et al. Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci. Lett. 331, 163–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Teunissen, C. et al. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci. Lett. 347, 159–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Van de Kraats, C. et al. Oxysterols and cholesterol precursors correlate to magnetic resonance imaging measures of neurodegeneration in multiple sclerosis. Mult. Scler. 20, 412–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Chataway, J. et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet 383, 2213–2221 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Weinshenker, B. G. Neuromyelitis optica is distinct from multiple sclerosis. Arch. Neurol. 64, 899–901 (2007).

    Article  PubMed  Google Scholar 

  72. Wingerchuk, D. M. & Weinshenker, B. G. Neuromyelitis optica (Devic's syndrome). Handb. Clin. Neurol. 122, 581–599 (2014).

    Article  PubMed  Google Scholar 

  73. Palace, J., Leite, M. I., Nairne, A. & Vincent, A. Interferon beta treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titres. Arch. Neurol. 67, 1016–1017 (2010).

    Article  PubMed  Google Scholar 

  74. Barnett, M. H., Prineas, J. W., Buckland, M. E., Parratt, J. D. & Pollard, J. D. Massive astrocyte destruction in neuromyelitis optica despite natalizumab therapy. Mult. Scler. 18, 108–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Kitley, J. et al. Catastrophic brain relapse in seronegative NMO after a single dose of natalizumab. J. Neurol. Sci. 339, 223–225 (2014).

    Article  PubMed  Google Scholar 

  76. Jarius, S. & Wildemann, B. Aquaporin-4 antibodies (NMO-IgG) as a serological marker of neuromyelitis optica: a critical review of the literature. Brain Pathol. 23, 661–683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bernard-Valnet, R., Liblau, R. S., Vukusic, S. & Marignier, R. Neuromyelitis optica: a positive appraisal of seronegative cases. Eur. J. Neurol. http://dx.doi.org/10.1111/ene.12679.

  78. Waters, P. J. et al. Serologic diagnosis of NMO: a multicentre comparison of aquaporin-4-IgG assays. Neurology 78, 665–671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jiao, Y. et al. Updated estimate of AQP4-IgG serostatus and disability outcome in neuromyelitis optica. Neurology 81, 1197–1204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tanaka, M. & Tanaka, K. Anti-MOG antibodies in adult patients with demyelinating disorders of the central nervous system. J. Neuroimmunol. 270, 98–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Höftberger, R. et al. Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Mult. Scler. 21, 866–874 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kitley, J. et al. Myelin-oligodendrocyte glycoprotein antibodies in adults with a neuromyelitis optica phenotype. Neurology 79, 1273–1277 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Sato, D. K. et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology 82, 474–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kezuka, T. et al. Relationship between NMO-antibody and anti-MOG antibody in optic neuritis. J. Neuroophthalmol. 32, 107–110 (2012).

    Article  PubMed  Google Scholar 

  85. Brill, L. et al. Increased anti-KIR4.1 antibodies in multiple sclerosis: could it be a marker of disease relapse? Mult. Scler. 21, 572–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Quaye, I. K. Haptoglobin, inflammation and disease. Trans. R. Soc. Trop. Med. Hyg. 102, 735–742 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Bai, S. et al. Proteome analysis of biomarkers in the cerebrospinal fluid of neuromyelitis optica patients. Mol. Vis. 15, 1638–1648 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bai, S. et al. Proteome analysis of haptoglobin in cerebrospinal fluid of neuromyelitis optica. Mol. Biol. Rep. 37, 1619–1625 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Chang, K.-H. et al. Analyses of haptoglobin level in the cerebrospinal fluid and serum of patients with neuromyelitis optica and multiple sclerosis. Clin. Chim. Acta 417, 26–30 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, S. F. et al. Proteomics comparison of the sera from multiple sclerosis patients and neuromyelitis optica patients. Genet. Mol. Res. 13, 9292–9299 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Sladkova, V., Mares, J., Hlustik, P., Langova, J. & Kanovsky, P. Intrathecal synthesis in particular types of multiple sclerosis. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 158, 124–126 (2014).

    Article  PubMed  Google Scholar 

  92. Villar, L. M. et al. Immunoglobulin M oligoclonal bands: biomarker of targetable inflammation in primary progressive multiple sclerosis. Ann. Neurol. 76, 231–240 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Fenoglio, C. et al. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult. Scler. 19, 1938–1942 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Bauernfeind, F. et al. NLRP3 inflammasome activity is negatively controlled by miR-223. J. Immunol. 189, 4175–4181 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Lv, X., Jiang, H., Liu, Y., Lei, X. & Jiao, J. MicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development. EMBO Rep. 15, 1305–1314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. De Stefano, N. et al. Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch. Neurol. 59, 1565–1571 (2002).

    Article  PubMed  Google Scholar 

  97. Jasperse, B. et al. N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry. J. Neurol. 254, 631–637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Teunissen, C. E. et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72, 1322–1329 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Trentini, A. et al. N-Acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J. Neurol. 261, 2338–2343 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Magraner, M. J. et al. Brain atrophy and lesion load are related to CSF lipid-specific IgM oligoclonal bands in clinically isolated syndromes. Neuroradiology 54, 5–12 (2012).

    Article  PubMed  Google Scholar 

  101. Villar, L. M. et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann. Neurol. 53, 222–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Villar, L. M. et al. Intrathecal IgM synthesis predicts the onset of new relapses and a worse disease course in MS. Neurology 59, 555–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Martínez, M. A. et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult. Scler. 21, 550–561 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Modvig, S. et al. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult. Scler. http://dx.doi.org/10.1177/1352458515574148.

  105. Gandhi, R. et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol. 73, 729–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Salzer, J., Svenningsson, A. & Sundström, P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult. Scler. 16, 287–292 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Gaiottino, J. et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS ONE 8, e75091 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Disanto, G. et al. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2014-309690.

  109. Petzold, A. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 125, 1462–1473 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Axelsson, M. et al. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J. Neurol. 258, 882–888 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Polman, C. H. et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet. Neurol. 9, 740–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Buck, D. et al. Influence of the HLA-DRB1 genotype on antibody development to interferon beta in multiple sclerosis. Arch. Neurol. 68, 480–487 (2011).

    Article  PubMed  Google Scholar 

  113. Hoffmann, S. et al. HLA-DRB1*0401 and HLA-DRB1*0408 are strongly associated with the development of antibodies against interferon-β therapy in multiple sclerosis. Am. J. Hum. Genet. 83, 219–227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hegen, H. et al. Early detection of neutralizing antibodies to interferon-beta in multiple sclerosis patients: binding antibodies predict neutralizing antibody development. Mult. Scler. 20, 577–587 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Gibbs, E., Karim, M. E. & Oger, J. Antibody dissociation rates are predictive of neutralizing antibody (NAb) course: a comparison of interferon beta-1b-treated patients with transient versus sustained NAbs. Clin. Immunol. 157, 91–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Serana, F. et al. MxA mRNA quantification and disability progression in interferon beta-treated multiple sclerosis patients. PLoS ONE 9, e94794 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vennegoor, A. et al. Clinical relevance of serum natalizumab concentration and anti-natalizumab antibodies in multiple sclerosis. Mult. Scler. 19, 593–600 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Lundkvist, M. et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients. Mult. Scler. 19, 757–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Axtell, R. C. et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hartung, H.-P. et al. Interleukin 17F level and interferon β response in patients with multiple sclerosis. JAMA Neurol. 70, 1017–1021 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hecker, M. et al. MicroRNA expression changes during interferon-beta treatment in the peripheral blood of multiple sclerosis patients. Int. J. Mol. Sci. 14, 16, 087–110 (2013).

    Article  CAS  Google Scholar 

  122. Liu, X.-F., Luo, Y.-B., Luo, Z.-H. & Yang, H. Biomarker studies in multiple sclerosis: from proteins to noncoding RNAs. Neurochem. Res. 39, 1661–1674 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. De Felice, B. et al. Small non-coding RNA signature in multiple sclerosis patients after treatment with interferon-β. BMC Med. Genomics 7, 26 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bloomgren, G. et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366, 1870–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Calabresi, P. A. et al. The incidence and significance of anti-natalizumab antibodies. Neurology 69, 1391–1403 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Plavina, T. et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann. Neurol. 76, 802–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Schwab, N. et al. L-selectin is a possible biomarker for individual PML risk in natalizumab-treated MS patients. Neurology 81, 865–871 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Villar, L. M. et al. Lipid-specific IgM bands in CSF associated with a reduced risk of developing PML during treatment with natalizumab. Ann. Neurol. 77, 447–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Teunissen, C. et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult. Scler. 19, 1802–1809 (2013).

    Article  PubMed  Google Scholar 

  130. Gnanapavan, S. et al. Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders. Neurology 83, 1210–1216 (2014).

    Article  PubMed  Google Scholar 

  131. Teunissen, C. E., Tumani, H., Engelborghs, S. & Mollenhauer, B. Biobanking of CSF: international standardization to optimize biomarker development. Clin. Biochem. 47, 288–292 (2014).

    Article  PubMed  Google Scholar 

  132. Del Campo, M. et al. Recommendations to standardize preanalytical confounding factors in Alzheimer's and Parkinson's disease cerebrospinal fluid biomarkers: an update. Biomark. Med. 6, 419–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Vanderstichele, H. et al. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement. 8, 65–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Teunissen, C. E. et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73, 1914–1922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. International Society for Biological and Environmental Repositories [online].

  136. VU Medical Center. Collaboration possibilities on Protein Stability in CSF [online].

  137. Andreasson, U. et al. A practical guide to immunoassay method validation. Front. Neurol. http://dx.doi.org/10.3389/fneur.2015.00179.

Download references

Acknowledgements

We acknowledge support from the Dutch MS Research Foundation (grant no 14-358e “Facing MS progression”), Fonds NutsOhra (grant no. ZonMw 89000005) and the International Progressive MS Alliance.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided substantial contribution to discussion of content of the article, and contributed to researching data for the article, and writing, reviewing and editing the article.

Corresponding author

Correspondence to Charlotte E. Teunissen.

Ethics declarations

Competing interests

C.E.T. serves on the advisory board of Fujirebio and Roche, has received research consumables from Fujirebio, Euroimmun, IBL, Invitrogen and Mesoscale Discovery, and has performed contract research for Boehringer, IBL, Probiodrug, Roche and Shire. J.K. has received consulting and speaker fees from Biogen, Genzyme, Novartis, Merck-Serono and TEVA. The VUMC MS Center Amsterdam has received financial support for research activities from Bayer Schering Pharma, Biogen Idec, Genzyme, Glaxo Smith Kline, Merck Serono, Novartis, and Teva. The other authors declare no competing interests.

Supplementary information

Supplementary Table 1

Summary of discussed studies on biomarkers for predicting conversion to MS and MS diagnosis (DOCX 94 kb)

Supplementary Table 2

Summary of discussed studies for differential diagnosis of MS and NMO (DOCX 41 kb)

Supplementary Table 3

Summary of discussed studies on biomarkers for subtyping and prognosis of MS (DOCX 48 kb)

Supplementary Table 4

Summary of discussed studies on biomarkers for treatment response in the period 2012–2015 (DOCX 51 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teunissen, C., Malekzadeh, A., Leurs, C. et al. Body fluid biomarkers for multiple sclerosis—the long road to clinical application. Nat Rev Neurol 11, 585–596 (2015). https://doi.org/10.1038/nrneurol.2015.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing