Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Randomized trials of endovascular therapy for stroke — impact on stroke care

Key Points

  • Five randomized trials of endovascular stroke therapy published in 2015 provided strong evidence in support of using stent retriever thrombectomy for anterior circulation strokes when initiated within 6 h of stroke onset

  • Various imaging approaches are used to select patients to receive endovascular interventions; the most effective imaging modality remains to be determined

  • The status of thrombectomy for stroke has now changed from 'experimental' to 'recommended' therapy

  • Questions remain about the management of posterior circulation strokes, the time window of effective endovascular treatment beyond 6 h of stroke onset, and the choice of anaesthesia for endovascular procedures

  • Future trials are likely to compare thrombectomy devices to optimize the procedure

  • Health-care systems will need to adapt to using endovascular therapies, and access to the treatment in remote areas and developing countries will pose a challenge

Abstract

Five trials that investigated the efficacy of modern endovascular therapies for stroke — MR CLEAN, ESCAPE, SWIFT PRIME, EXTEND IA and REVASCAT — have been published within the past year, changing the landscape of acute stroke management. The trials used a variety of imaging modalities and combinations of treatment approaches, including the mandatory use of intravenous thrombolysis before the initiation of endovascular therapy. All five trials provided strong evidence to support the use of thrombectomy that is initiated within 6 h of stroke onset, prompting worldwide changes in the guidelines for management of acute stroke by endovascular treatment. The benefits of endovascular therapy were observed irrespective of a patient's age, their NIH Stroke Scale score, or whether they received intravenous thrombolysis. In this article, we review the main findings of these recent trials, focusing on key aspects of their designs, and discuss their impact on the future management of patients with acute stroke that results from large-vessel occlusion. We discuss the values of noncontrast CT ASPECTS, perfusion imaging and angiography for selecting patients to receive endovascular interventions. We also consider the role of thrombectomy beyond 6 h after stroke onset, and in patients with posterior circulation strokes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Management of acute ischaemic stroke after ICA-T occlusion.

Similar content being viewed by others

References

  1. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1587 (1995).

  2. Hacke, W. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359, 1317–1329 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Faiz, K. W., Sundseth, A., Thommessen, B. & Ronning, O. M. Reasons for low thrombolysis rate in a Norwegian ischemic stroke population. Neurol. Sci. 35, 1977–1982 (2014).

    Article  PubMed  Google Scholar 

  4. García-Moncó, J. C. et al. Analysis of the reasons for exclusion from tPA therapy after early arrival in acute stroke patients. Clin. Neurol. Neurosurg. 109, 50–53 (2007).

    Article  PubMed  Google Scholar 

  5. Barber, P. A., Zhang, J., Demchuk, A. M., Hill, M. D. & Buchan, A. M. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology 56, 1015–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. van den Berg, J. S. & de Jong, G. Why ischemic stroke patients do not receive thrombolytic treatment: results from a general hospital. Acta Neurol. Scand. 120, 157–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Furlan, A. et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. JAMA 282, 2003–2011 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, W. S. et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke 36, 1432–1438 (2005).

    Article  PubMed  Google Scholar 

  9. Penumbra Pivotal Stroke Trial Investigators. The Penumbra Pivotal Stroke Trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 40, 2761–2768 (2009).

  10. Broderick, J. P. et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 368, 893–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ciccone, A. et al. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 368, 904–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kidwell, C. S. et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N. Engl. J. Med. 368, 914–923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saver, J. L. et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 380, 1241–1249 (2012).

    Article  PubMed  Google Scholar 

  14. Nogueira, R. G. et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet 380, 1231–1240 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Saver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA versus t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Goyal, M. et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 372, 1019–1030 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Campbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Jovin, T. G. et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 372, 2296–2306 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  21. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  22. Bracard, S., Guillemin, F., Ducrocq, X. & the THRACE investigators. Thrace study: intermediate analysis results [abstract ESOC-1594]. Int. J. Stroke 10 (Suppl. 2), 31 (2015).

    Google Scholar 

  23. Mocco, J. et al. Results of the therapy trial: a prospective, randomized trial to define the role of mechanical thrombectomy as adjunctive treatment to IV rtPA in acute ischemic stroke [abstract ESOC-1614]. Int. J. Stroke 10 (Suppl. 2), 10 (2015).

    Google Scholar 

  24. Urra, X. et al. Mechanical thrombectomy in and outside the REVASCAT trial: insights from a concurrent population-based stroke registry. Stroke 46, 3437–3442 (2015).

    Article  PubMed  Google Scholar 

  25. Goyal, M. et al. Endovascular stroke trials: why we must enroll all eligible patients. Stroke 44, 3591–3595 (2013).

    Article  PubMed  Google Scholar 

  26. Barber, P. A., Demchuk, A. M., Zhang, J. & Buchan, A. M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355, 1670–1674 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Hill, M. D. et al. Alberta Stroke Program early computed tomography score to select patients for endovascular treatment: Interventional Management of Stroke (IMS)-III Trial. Stroke 45, 444–449 (2014).

    Article  PubMed  Google Scholar 

  28. Yoo, A. J. et al. Impact of pretreatment noncontrast CT Alberta Stroke Program Early CT Score on clinical outcome after intra-arterial stroke therapy. Stroke 45, 746–751 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Puetz, V. et al. Extent of hypoattenuation on CT angiography source images in basilar artery occlusion: prognostic value in the Basilar Artery International Cooperation Study. Stroke 42, 3454–3459 (2011).

    Article  PubMed  Google Scholar 

  30. Puetz, V. et al. Extent of hypoattenuation on CT angiography source images predicts functional outcome in patients with basilar artery occlusion. Stroke 39, 2485–2490 (2008).

    Article  PubMed  Google Scholar 

  31. Lum, C. et al. Computed tomographic angiography and cerebral blood volume can predict final infarct volume and outcome after recanalization. Stroke 45, 2683–2688 (2014).

    Article  PubMed  Google Scholar 

  32. Lin, K. et al. Accuracy of the Alberta Stroke Program Early CT Score during the first 3 hours of middle cerebral artery stroke: comparison of noncontrast CT, CT angiography source images, and CT perfusion. AJNR Am. J. Neuroradiol. 29, 931–936 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Finlayson, O. et al. Interobserver agreement of ASPECT score distribution for noncontrast CT, CT angiography, and CT perfusion in acute stroke. Stroke 44, 234–236 (2013).

    Article  PubMed  Google Scholar 

  34. Turk, A. S. et al. CT perfusion-guided patient selection for endovascular recanalization in acute ischemic stroke: a multicenter study. J. Neurointerv. Surg. 5, 523–527 (2013).

    Article  PubMed  Google Scholar 

  35. Albers, G. W. et al. Relationships between imaging assessments and outcomes in solitaire with the intention for thrombectomy as primary endovascular treatment for acute ischemic stroke. Stroke 46, 2786–2794 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Sheth, K. N. et al. Advanced modality imaging evaluation in acute ischemic stroke may lead to delayed endovascular reperfusion therapy without improvement in clinical outcomes. J. Neurointerv. Surg. 5 (Suppl. 1), i62–i65 (2013).

    Article  PubMed  Google Scholar 

  37. Liebeskind, D. S. et al. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke 45, 2036–2040 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Elijovich, L. et al. CTA collateral score predicts infarct volume and clinical outcome after endovascular therapy for acute ischemic stroke: a retrospective chart review. J. Neurointerv. Surg. http://dx.doi.org/10.1136/neurintsurg-2015-011731.

  39. Sung, S. M. et al. Functional outcome after recanalization for acute pure M1 occlusion of the middle cerebral artery as assessed by collateral CTA flow. Clin. Neurol. Neurosurg. 131, 72–76 (2015).

    Article  PubMed  Google Scholar 

  40. Nambiar, V. et al. CTA collateral status and response to recanalization in patients with acute ischemic stroke. AJNR Am. J. Neuroradiol. 35, 884–890 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, C. Y. et al. Multiphase CT angiography versus single-phase CT angiography: comparison of image quality and radiation dose. AJNR Am. J. Neuroradiol. 29, 1288–1295 (2008).

    Article  PubMed  Google Scholar 

  42. Menon, B. K. et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275, 510–520 (2015).

    Article  PubMed  Google Scholar 

  43. Lansberg, M. G., Schrooten, M., Bluhmki, E., Thijs, V. N. & Saver, J. L. Treatment time-specific number needed to treat estimates for tissue plasminogen activator therapy in acute stroke based on shifts over the entire range of the modified Rankin Scale. Stroke 40, 2079–2084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Daou, B. et al. Predictors of outcome, complications, and recanalization of the Solitaire device: a study of 89 cases. Neurosurgery 77, 355–361 (2015).

    Article  PubMed  Google Scholar 

  45. Mokin, M. et al. Solitaire Flow Restoration thrombectomy for acute ischemic stroke: retrospective multicenter analysis of early postmarket experience after FDA approval. Neurosurgery 73, 19–25 (2013).

    Article  PubMed  Google Scholar 

  46. Raoult, H. et al. Prognostic factors for outcomes after mechanical thrombectomy with solitaire stent. J. Neuroradiol. 40, 252–259 (2013).

    Article  PubMed  Google Scholar 

  47. Khatri, P. et al. State of acute endovascular therapy: report from the 12th Thrombolysis, Thrombectomy, and Acute Stroke Therapy Conference. Stroke 46, 1727–1734 (2015).

    Article  PubMed  Google Scholar 

  48. Gory, B. et al. Outcomes of stent retriever thrombectomy in basilar artery occlusion: an observational study and systematic review. J. Neurol. Neurosurg. Psychiatry http://dx.doi.org/10.1136/jnnp-2014-310250.

  49. Singer, O. C. et al. Mechanical recanalization in basilar artery occlusion: the ENDOSTROKE study. Ann. Neurol. 77, 415–424 (2015).

    Article  PubMed  Google Scholar 

  50. Schonewille, W. J., Algra, A., Serena, J., Molina, C. A. & Kappelle, L. J. Outcome in patients with basilar artery occlusion treated conventionally. J. Neurol. Neurosurg. Psychiatry 76, 1238–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baird, T. A., Muir, K. W. & Bone, I. Basilar artery occlusion. Neurocrit. Care 1, 319–329 (2004).

    Article  PubMed  Google Scholar 

  52. Lindsberg, P. J. & Mattle, H. P. Therapy of basilar artery occlusion: a systematic analysis comparing intra-arterial and intravenous thrombolysis. Stroke 37, 922–928 (2006).

    Article  PubMed  Google Scholar 

  53. Sairanen, T. et al. Intravenous thrombolysis of basilar artery occlusion: predictors of recanalization and outcome. Stroke 42, 2175–2179 (2011).

    Article  PubMed  Google Scholar 

  54. Khatri, P. et al. Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: an analysis of data from the Interventional Management of Stroke (IMS III) Phase 3 trial. Lancet Neurol. 13, 567–574 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Goyal, M. et al. Evaluation of interval times from onset to reperfusion in patients undergoing endovascular therapy in the Interventional Management of Stroke III trial. Circulation 130, 265–272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pereira, V. M. et al. Prospective, multicenter, single-arm study of mechanical thrombectomy using Solitaire Flow Restoration in acute ischemic stroke. Stroke 44, 2802–2807 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sheth, S. A. et al. Time to endovascular reperfusion and degree of disability in acute stroke. Ann. Neurol. 78, 584–593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  59. Mokin, M. et al. Endovascular therapy of wake-up strokes in the modern era of stent retriever thrombectomy. J. Neurointerv. Surg. http://dx.doi.org/10.1136/neurintsurg-2014-011586.

  60. Buck, D., Shaw, L. C., Price, C. I. & Ford, G. A. Reperfusion therapies for wake-up stroke: systematic review. Stroke 45, 1869–1875 (2014).

    Article  PubMed  Google Scholar 

  61. van den Berg, L. A. et al. Type of anesthesia and differences in clinical outcome after intra-arterial treatment for ischemic stroke. Stroke 46, 1257–1262 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Abou-Chebl, A. et al. Conscious sedation versus general anesthesia during endovascular therapy for acute anterior circulation stroke: preliminary results from a retrospective, multicenter study. Stroke 41, 1175–1179 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. John, S. et al. Intra-arterial therapy for acute ischemic stroke under general anesthesia versus monitored anesthesia care. Cerebrovasc. Dis. 38, 262–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Brinjikji, W. et al. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment: a systematic review and meta-analysis. AJNR Am. J. Neuroradiol. 36, 525–529 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  66. Rha, J. H. & Saver, J. L. The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38, 967–973 (2007).

    Article  PubMed  Google Scholar 

  67. Zaidat, O. O. et al. Recommendations on angiographic revascularization grading standards for acute ischemic stroke: a consensus statement. Stroke 44, 2650–2663 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Marks, M. P. et al. Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome. J. Neurointerv. Surg. 6, 724–728 (2014).

    Article  PubMed  Google Scholar 

  69. Gounis, M. J., Wakhloo, A. K. & Chueh, J. Y. Preclinical investigations for thrombectomy devices — does it translate to humans? Stroke 44, S7–S10 (2013).

    Article  PubMed  Google Scholar 

  70. Teng, D. et al. Endothelial trauma from mechanical thrombectomy in acute stroke: in vitro live-cell platform with animal validation. Stroke 46, 1099–1106 (2015).

    Article  PubMed  Google Scholar 

  71. Chueh, J. Y., Puri, A. S., Wakhloo, A. K. & Gounis, M. J. Risk of distal embolization with stent retriever thrombectomy and ADAPT. J. Neurointerv. Surg. http://dx.doi.org/10.1136/neurintsurg-2014-011491.

  72. Mokin, M., Setlur Nagesh, S. V., Ionita, C. N., Levy, E. I. & Siddiqui, A. H. Comparison of modern stroke thrombectomy approaches using an in vitro cerebrovascular occlusion model. AJNR Am. J. Neuroradiol. 36, 547–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Chueh, J. Y. et al. Reduction in distal emboli with proximal flow control during mechanical thrombectomy: a quantitative in vitro study. Stroke 44, 1396–1401 (2013).

    Article  PubMed  Google Scholar 

  74. Nguyen, T. N. et al. Balloon guide catheter improves revascularization and clinical outcomes with the Solitaire device: analysis of the North American Solitaire Acute Stroke Registry. Stroke 45, 141–145 (2014).

    Article  PubMed  Google Scholar 

  75. Humphries, W. et al. Distal aspiration with retrievable stent assisted thrombectomy for the treatment of acute ischemic stroke. J. Neurointerv. Surg. 7, 90–94 (2015).

    Article  PubMed  Google Scholar 

  76. Mehta, B. P. et al. ADAPT FAST Study: third-generation stroke thrombectomy devices place renewed focus on the elusive relationship between revascularization and good outcomes. J. Neurointerv. Surg. http://dx.doi.org/10.1136/neurintsurg-2014-011507.

  77. Turk, A. S. et al. ADAPT FAST study: a direct aspiration first pass technique for acute stroke thrombectomy. J. Neurointerv. Surg. 6, 260–264 (2014).

    Article  PubMed  Google Scholar 

  78. Fiorella, D. et al. Too much guidance. J. Neurointerv. Surg. 7, 626–627 (2015).

    Article  PubMed  Google Scholar 

  79. Powers, W. J. et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46, 3020–3035 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Jayaraman, M. V. et al. Embolectomy for stroke with emergent large vessel occlusion (ELVO): report of the Standards and Guidelines Committee of the Society of NeuroInterventional Surgery. J. Neurointerv. Surg. 7, 316–321 (2015).

    Article  PubMed  Google Scholar 

  81. Schwamm, L. H. et al. Temporal trends in patient characteristics and treatment with intravenous thrombolysis among acute ischemic stroke patients at Get With The Guidelines-Stroke hospitals. Circ. Cardiovasc. Qual. Outcomes 6, 543–549 (2013).

    Article  PubMed  Google Scholar 

  82. Wang, Y. et al. Using recombinant tissue plasminogen activator to treat acute ischemic stroke in China: analysis of the results from the Chinese National Stroke Registry (CNSR). Stroke 42, 1658–1664 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Ghandehari, K. Barriers of thrombolysis therapy in developing countries. Stroke Res. Treat. 2011, 686797 (2011).

    PubMed  PubMed Central  Google Scholar 

  84. Lenti, L. et al. Stroke care in Central Eastern Europe: current problems and call for action. Int. J. Stroke 8, 365–371 (2013).

    Article  PubMed  Google Scholar 

  85. Wasay, M., Khatri, I. A. & Kaul, S. Stroke in South Asian countries. Nat. Rev. Neurol. 10, 135–143 (2014).

    Article  PubMed  Google Scholar 

  86. Song, D. et al. Factors associated with early hospital arrival in patients with acute ischemic stroke. J. Stroke 17, 159–167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leon-Jimenez, C. et al. Hospital arrival time and functional outcome after acute ischaemic stroke: results from the PREMIER study. Neurologia 29, 200–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Sauser, K., Bravata, D. M., Hayward, R. A. & Levine, D. A. A national evaluation of door-to-imaging times among acute ischemic stroke patients within the Veterans Health Administration. J. Stroke Cerebrovasc. Dis. 24, 1329–1332 (2015).

    Article  PubMed  Google Scholar 

  89. Broderick, J. P. et al. Evolution of practice during the Interventional Management of Stroke III Trial and implications for ongoing trials. Stroke 45, 3606–3611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Busby, L. et al. CODE FAST: a quality improvement initiative to reduce door-to-needle times. J. Neurointerv. Surg. http://dx.doi.org/10.1136/neurintsurg-2015-011806.

  91. Liebeskind, D. S. et al. Early arrival at the emergency department is associated with better collaterals, smaller established infarcts and better clinical outcomes with endovascular stroke therapy: SWIFT study. J. Neurointerv. Surg. http://dx.doi.org/10.1136/neurintsurg-2015-011758.

  92. Ebinger, M. et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA 311, 1622–1631 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Hess, D. C. & Audebert, H. J. The history and future of telestroke. Nat. Rev. Neurol. 9, 340–350 (2013).

    Article  PubMed  Google Scholar 

  94. Switzer, J. A. et al. Cost-effectiveness of hub-and-spoke telestroke networks for the management of acute ischemic stroke from the hospitals' perspectives. Circ. Cardiovasc. Qual. Outcomes 6, 18–26 (2013).

    Article  PubMed  Google Scholar 

  95. Parker, S. A. et al. Establishing the first mobile stroke unit in the United States. Stroke 46, 1384–1391 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Smith, W. S. et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 39, 1205–1212 (2008).

    Article  PubMed  Google Scholar 

  97. Samaniego, E. A., Dabus, G. & Linfante, I. Stenting in the treatment of acute ischemic stroke: literature review. Front. Neurol. 2, 76 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Levy, E. I. et al. Midterm clinical and angiographic follow-up for the first Food and Drug Administration-approved prospective, Single-Arm Trial of Primary Stenting for Stroke: SARIS (stent-assisted recanalization for acute ischemic stroke). Neurosurgery 69, 915–920 (2011).

    Article  PubMed  Google Scholar 

  99. John, S. et al. Initial experience using the 5MAX ACE reperfusion catheter in intra-arterial therapy for acute ischemic stroke. J. Cerebrovasc. Endovasc. Neurosurg. 16, 350–357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.M. researched data for the article. All authors made substantial contributions to discussion of the content of the article, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Maxim Mokin.

Ethics declarations

Competing interests

E.I.L. was a principal investigator of the Covidien US SWIFT PRIME trial, has had shareholder or ownership interests in Intratech Medical, CardinalHealth (formerly AccessClosure) and Blockade Medical, and has received compensation from Abbott for carotid stenting training for physicians. M.M. and H.R. declare no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokin, M., Rojas, H. & Levy, E. Randomized trials of endovascular therapy for stroke — impact on stroke care. Nat Rev Neurol 12, 86–94 (2016). https://doi.org/10.1038/nrneurol.2015.240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing