Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Skeletal muscle disorders of glycogenolysis and glycolysis

Key Points

  • Of the glycogenolytic and glycolytic disorders (GSDs), McArdle disease (GSD V) is the most common (prevalence 1 in 100,000–167,000), and β-enolase deficiency is the rarest, with only three cases identified to date

  • The GSDs result from autosomal or X-linked recessive mutations, resulting in a specific enzyme deficiency that leads to the inability to utilize muscle glycogen as an energy substrate

  • The main features of the GSDs include exercise intolerance, hyperCKaemia and myoglobinuria; paradoxically, when appropriately prescribed, exercise can improve work capacity, reduce health risks, ameliorate symptoms and improve quality of life

  • Exercise intolerance and, hence, avoidance can lead to secondary health threats from a sedentary lifestyle, increase health risks generally, and further impair quality of life

  • Additional clinical features, such as dysmorphic features, haemolysis, neurological features, liver disease, skin lesions and/or cardiomyopathy, can help to pinpoint the specific enzyme deficiency

  • Potential therapies for McArdle disease are being explored through the use of animal models of the disease (cattle, sheep and mice), and through dietary manipulation and speculative drug therapy in humans

  • A European database (EUROMAC) has been established to pool and transfer knowledge regarding McArdle disease and other rare diseases of carbohydrate metabolism more effectively

Abstract

Skeletal muscle disorders of glycogenolysis and glycolysis account for most of the conditions collectively termed glycogen storage diseases (GSDs). These disorders are rare (incidence 1 in 20,000–43,000 live births), and are caused by autosomal or X-linked recessive mutations that result in a specific enzyme deficiency, leading to the inability to utilize muscle glycogen as an energy substrate. McArdle disease (GSD V) is the most common of these disorders, and is caused by mutations in the gene encoding muscle glycogen phosphorylase. Symptoms of McArdle disease and most other related GSDs include exercise intolerance, muscle contracture, acute rhabdomyolysis, and risk of acute renal failure. Older patients may exhibit muscle wasting and weakness involving the paraspinal muscles and shoulder girdle. For patients with these conditions, engaging with exercise is likely to be beneficial. Diagnosis is frequently delayed owing to the rarity of the conditions and lack of access to appropriate investigations. A few randomized clinical trials have been conducted, some focusing on dietary modification, although the quality of the evidence is low and no specific recommendations can yet be made. The development of EUROMAC, an international registry for these disorders, should improve our knowledge of their natural histories and provide a platform for future clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enzymatic pathways involved in glycolysis and glycogenolysis.
Figure 2: Distribution of carbohydrate in the body.
Figure 3: Muscle biopsy from a patient with McArdle disease.
Figure 4: Blood lactate concentration with exercise.

Similar content being viewed by others

References

  1. Ozen, H. Glycogen storage diseases: new perspectives. World J. Gastroenterol. 13, 2541–2553 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boustany, R.-M. Lysosomal storage diseases — the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).

    CAS  PubMed  Google Scholar 

  3. Levine, J. A. Non-exercise activity thermogenesis. Proc. Nutr. Soc. 62, 667–679 (2003).

    CAS  PubMed  Google Scholar 

  4. Quinlivan, R. et al. McArdle disease: a clinical review. J. Neurol. Neurosurg. Psychiatry 81, 1182–1188 (2010).

    CAS  PubMed  Google Scholar 

  5. Preisler, N., Haller, R. G. & Vissing, J. Exercise in muscle glycogen storage diseases. J. Inherit. Metab. Dis. 38, 551–563 (2015).

    CAS  PubMed  Google Scholar 

  6. McArdle, B. Myopathy due to a defect in muscle glycogen breakdown. Clin. Sci. 10, 13–35 (1951).

    CAS  PubMed  Google Scholar 

  7. Tsujino, S., Shanske, S. & DiMauro, S. Molecular genetic heterogeneity of myophosphorylase deficiency (McArdle disease). N. Engl. J. Med. 329, 241–245 (1993).

    CAS  PubMed  Google Scholar 

  8. Nogales-Gadea, G. et al. McArdle disease: update of reported mutations and polymorphisms in the PYGM gene. Hum. Mutat. 36, 669–678 (2015).

    CAS  PubMed  Google Scholar 

  9. DeCastro, M., Johnston, J. & Biesecker, L. Determining the prevalence of McArdle disease from gene frequency by analysis of next-generation sequencing data. Genet. Med. 17, 1002–1006 (2015).

    CAS  Google Scholar 

  10. Lucia, A. et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J. Neurol. Neurosurg. Psychiatry 83, 322–328 (2012).

    PubMed  Google Scholar 

  11. Vissing, J., Duno, M., Schwartz, M. & Haller, R. G. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain 132, 1545–1552 (2009).

    PubMed  Google Scholar 

  12. McArdle, W. D., Katch, F. I. & Katch, V. L. Essentials of Exercise Physiology 2nd edn (Lippincott Williams & Wilkins, 2000).

    Google Scholar 

  13. Dubowitz, V., Sewry, A. & Oldfors, A. Muscle Biopsy: A Practical Approach 4th edn (Saunders Ltd, 2013).

    Google Scholar 

  14. Cristina Pacheco, M., Miles, L. & Bove, K. E. False negative histochemical reaction for myophosphorylase activity in fulminant sepsis due to methicillin resistant Staphylococcus aureus. Neuromuscul. Disord. 17, 983–985 (2007).

    CAS  PubMed  Google Scholar 

  15. Huxley, H. & Hanson, J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976 (1954).

    CAS  PubMed  Google Scholar 

  16. Huxley, A. F. & Neidergerke, R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173, 971–973 (1954).

    CAS  PubMed  Google Scholar 

  17. Pearson, C. M., Rimer, D. G. & Mommaerts, W. F. A metabolic myopathy due to absence of muscle phosphorylase. Am. J. Med. 30, 502–517 (1961).

    CAS  PubMed  Google Scholar 

  18. Vissing, J. & Haller, R. G. A diagnostic cycle test for McArdle's disease. Ann. Neurol. 54, 539–542 (2003).

    PubMed  Google Scholar 

  19. Gladden, L. B. Muscle as a consumer of lactate. Med. Sci. Sports Exerc. 32, 764–771 (2000).

    CAS  PubMed  Google Scholar 

  20. Donovan, C. M. & Pagliassotti, M. J. Quantitative assessment of pathways for lactate disposal in skeletal muscle fiber types. Med. Sci. Sports Exerc. 32, 772–777 (2000).

    CAS  PubMed  Google Scholar 

  21. Gruener, R., McArdle, B., Ryman, B. E. & Weller, R. O. Contracture of phosphorylase deficient muscle. J. Neurol. Neurosurg. Psychiatry 31, 268–283 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Buckley, J. P., Quinlivan, R. M., Sim, J., Eston, R. G. & Short, D. S. Heart rate and perceived pain responses to a functional walking test in McArdle disease. J. Sports Sci. 32, 1561–1569 (2014).

    PubMed  Google Scholar 

  23. Borg, G. Borg's Perceived Exertion and Pain Scales (Human Kinetics, 1998).

    Google Scholar 

  24. Department of Health. Start active, stay active: report on physical activity in the UK. GOV. UK https://www.gov.uk/government/publications/start-active-stay-active-a-report-on-physical-activity-from-the-four-home-countries-chief-medical-officers (2011).

  25. Garber, C. E. et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359 (2011).

    PubMed  Google Scholar 

  26. Blair, S. N. et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262, 2395–2401 (1989).

    CAS  PubMed  Google Scholar 

  27. Kodama, S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301, 2024–2035 (2009).

    CAS  PubMed  Google Scholar 

  28. Kavanagh, T. et al. Prediction of long-term prognosis in 12 169 men referred for cardiac rehabilitation. Circulation 106, 666–671 (2002).

    PubMed  Google Scholar 

  29. Kavanagh, T. et al. Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J. Am. Coll. Cardiol. 42, 2139–2143 (2003).

    PubMed  Google Scholar 

  30. Myers, J., Prakash, M., Froelicher, V., Partington, S. & Atwood, J. E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 346, 793–801 (2002).

    PubMed  Google Scholar 

  31. Babraj, J. A. et al. Extremely short duration high intensity interval training substantially improves insulin action in young males. BMC Endocr. Disord. 9, 3 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Hansen, D. et al. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise at lowering blood HbA1c in obese type 2 diabetes patients. Diabetologia 52, 1789–1797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Musa, D. I., Adeniran, S. A., Dikko, A. U. & Sayers, S. P. The effect of a high-intensity interval training program on high-density lipoprotein cholesterol in young men. J. Strength Cond. Res. 23, 587–592 (2009).

    PubMed  Google Scholar 

  34. Tsekouras, Y. E. et al. High-intensity interval aerobic training reduces hepatic very low-density lipoprotein-triglyceride secretion rate in men. Am. J. Physiol. Endocrinol. Metab. 295, E851–E858 (2008).

    CAS  PubMed  Google Scholar 

  35. Burgomaster, K. A. et al. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1970–R1976 (2007).

    CAS  PubMed  Google Scholar 

  36. Talanian, J. L. et al. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E180–E188 (2010).

    CAS  PubMed  Google Scholar 

  37. Munguía-Izquierdo, D., Santalla, A. & Lucia, A. Cardiorespiratory fitness, physical activity and quality of life in patients with McArdle disease. Med. Sci. Sports Exerc. 47, 799–808 (2015).

    PubMed  Google Scholar 

  38. Haller, R. G., Wyrick, P., Taivassalo, T. & Vissing, J. Aerobic conditioning: an effective therapy in McArdle's disease. Ann. Neurol. 59, 922–928 (2006).

    PubMed  Google Scholar 

  39. García-Benítez, S., Fleck, S. J., Naclerio, F., Martín, M. A. & Lucia, A. Resistance (weight lifting) training in an adolescent with McArdle disease. J. Child Neurol. 28, 805–808 (2013).

    PubMed  Google Scholar 

  40. Santalla, A. et al. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front. Aging Neurosci. 6, 334 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Kley, R. A., Tarnopolsky, M. A. & Vorgerd, M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 6, CD004760 (2013).

    Google Scholar 

  42. Quinlivan, R., Martinuzzi, A. & Schoser, B. Pharmacological and nutritional treatment for McArdle disease (Glycogen Storage Disease type V). Cochrane Database Syst. Rev. 11, CD003458 (2014).

    Google Scholar 

  43. Vissing, J. & Haller, R. G. The effect of oral sucrose on exercise tolerance in patients with McArdle's disease. N. Engl. J. Med. 349, 2503–2509 (2003).

    CAS  PubMed  Google Scholar 

  44. Lucia, A. et al. McArdle disease: what do neurologists need to know? Nat. Clin. Pract. Neurol. 4, 568–577 (2008).

    PubMed  Google Scholar 

  45. Andersen, S. T., Haller, R. G. & Vissing, J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch. Neurol. 65, 786–789 (2008).

    PubMed  Google Scholar 

  46. Ørngreen, M. C. et al. Fat metabolism during exercise in patients with McArdle disease. Neurology 72, 718–724 (2009).

    PubMed  Google Scholar 

  47. Vorgerd, M. & Zange, J. Treatment of glycogenosis type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle. Acta Myol. 26, 61–63 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nogales-Gadea, G. et al. Knock-in mice for R50X mutation in the PYGM gene present with McArdle disease. Brain 135, 2048–2057 (2012).

    PubMed  Google Scholar 

  49. Howell, J. M. et al. Phosphorylase re-expression, increase in the force of contraction and decreased fatigue following notexin-induced muscle damage and regeneration in the ovine model of McArdle disease. Neuromuscul. Disord. 24, 167–177 (2014).

    PubMed  Google Scholar 

  50. Howell, J. M., Dunton, E., Creed, K. E., Quinlivan, R. & Sewry, C. Investigating sodium valproate as a treatment for McArdle disease in sheep. Neuromuscul. Disord. 25, 111–119 (2015).

    PubMed  Google Scholar 

  51. Shen, J. et al. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J. Clin. Invest. 98, 352–357 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Endo, Y. et al. Molecular analysis of the AGL gene: heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey. J. Hum. Genet. 51, 958–963 (2006).

    CAS  PubMed  Google Scholar 

  53. Van Hoof, F. & Hers, H. G. The subgroups of type III glycogenosis. Eur. J. Biochem. 2, 265–270 (1967).

    CAS  PubMed  Google Scholar 

  54. Ding, J.-H., de Barsy, T., Brown, B. I., Coleman, R. A. & Chen, Y.-T. Immunoblot analyses of glycogen debranching enzyme in different subtypes of glycogen storage disease type III. J. Pediatr. 116, 95–100 (1990).

    CAS  PubMed  Google Scholar 

  55. Kishnani, P. S. et al. Glycogen storage disease type III diagnosis and management guidelines. Genet. Med. 12, 446–463 (2010).

    CAS  PubMed  Google Scholar 

  56. Preisler, N. et al. Exercise intolerance in glycogen storage disease type III: weakness or energy deficiency. Mol. Genet. Metab. 109, 14–20 (2013).

    CAS  PubMed  Google Scholar 

  57. Preisler, N. et al. Skeletal muscle metabolism is impaired during exercise in glycogen storage disease type III. Neurology 84, 1767–1771 (2015).

    CAS  PubMed  Google Scholar 

  58. Wary, C. et al. Investigating glycogenosis type III with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul. Disord. 20, 548–558 (2010).

    PubMed  Google Scholar 

  59. Tarui, S. et al. Phosphofructokinase deficiency in skeletal muscle. A new type of glycogenosis. Biochem. Biophys. Res. Commun. 19, 517–523 (1965).

    CAS  PubMed  Google Scholar 

  60. Vora, S., Seaman, C., Durham, S. & Piomelli, S. Isoenzymes of human phosphofructokinase: identification and subunit structural characterization of a new system. Proc. Natl Acad. Sci. USA 77, 62–66 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Toscano, A. & Musumeci, O. Tarui disease and distal glycogenosis: clinical and genetic update. Acta Myol. 26, 105–107 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ronquist, G., Rudolphi, O., Engström, I. & Waldenström, A. Familial phosphofructokinase deficiency is associated with a disturbed calcium homeostasis in erythrocytes. J. Intern. Med. 240, 85–95 (2001).

    Google Scholar 

  63. DiMauro, S. & Garone, C. Metabolic disorders of fetal life: glycogenoses and mitochondrial defects of the respiratory chain. Semin. Fetal Neonatal Med. 16, 181–189 (2011).

    CAS  PubMed  Google Scholar 

  64. Sherman, J. B. et al. Common mutations in the phosphofructokinase-M gene Ashkenazi Jewish patients with glycogenesis VII — and their population frequency. Am. J. Hum. Genet. 55, 305–313 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Smith, B. F. et al. Molecular basis of canine muscle type phosphofructokinase deficiency. J. Biol. Chem. 27, 20070–20074 (1996).

    Google Scholar 

  66. Maichele, A. J., Burwinkel, B., Maire, I., Søvik, O. & Kilimann, M. W. Mutations in the testis/liver isoform of the phosphorylase kinase γ subunit (PHKG2) cause autosomal liver glycogenosis in gsd rat and in humans. Nat. Genet. 14, 337–340 (1996).

    CAS  PubMed  Google Scholar 

  67. Hug, G., Schubert, W. K. & Chuck, G. Phosphorylase kinase of the liver: deficiency in a girl with increased hepatic glycogen. Science 153, 1534–1535 (1966).

    CAS  PubMed  Google Scholar 

  68. Beauchamp, N. J. et al. Glycogen storage disease type IX: high variability in clinical phenotype. Mol. Genet. Metab. 92, 88–99 (2007).

    CAS  PubMed  Google Scholar 

  69. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    CAS  PubMed  Google Scholar 

  70. Bali, D. S. et al. Variability of disease spectrum in children with liver phosphorylase kinase deficiency caused by mutations in the PHKG2 gene. Mol. Genet. Metab. 111, 309–313 (2014).

    CAS  PubMed  Google Scholar 

  71. Chen, Y.-T. Kishnani, P. S. & Koeberl, D. Glycogen storage diseases. The Online Metabolic and Molecular Bases of Inherited Disease http://ommbid.mhmedical.com/content.aspx?bookid=971&sectionid=62672129 (2009).

    Google Scholar 

  72. Comi, G. P. et al. β-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann. Neurol. 50, 202–207 (2001).

    CAS  PubMed  Google Scholar 

  73. Musumeci, O. et al. Recurrent rhabdomyolysis due to muscle β-enolase deficiency: very rare or underestimated. J. Neurol. 261, 2424–2428 (2014).

    PubMed  Google Scholar 

  74. Chen, S.-H. & Giblett, E. R. Enolase: human tissue distribution and evidence for three different loci. Ann. Hum. Genet. 39, 277–280 (1976).

    CAS  PubMed  Google Scholar 

  75. Stojkovic, T. et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N. Engl. J. Med. 361, 425–427 (2009).

    CAS  PubMed  Google Scholar 

  76. Tegtmeyer, L. C. et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 370, 533–542 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Morava, E. Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol. Genet. Metab. 112, 275–279 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Salameh, J., Goyal, N., Choudry, R., Camelo-Piragua, S. & Chong, P. S. Phosphoglycerate mutase deficiency with tubular aggregates in a patient from Panama. Muscle Nerve 47, 138–140 (2013).

    CAS  PubMed  Google Scholar 

  79. Oh, S. J. et al. Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency. Muscle Nerve 34, 572–576 (2006).

    CAS  PubMed  Google Scholar 

  80. Tsujino, S., Shanske, S., Sakoda, S., Toscano, A. & DiMauro, S. Molecular genetic studies in muscle phosphoglycerate mutase (PGAM-M) deficiency. Muscle Nerve Suppl. 3, S50–S53 (1995).

    CAS  PubMed  Google Scholar 

  81. Tonin, P. et al. Unusual presentation of phosphoglycerate mutase deficiency due to two different mutations in PGAM-M gene. Neuromuscul. Disord. 19, 776–778 (2009).

    PubMed  Google Scholar 

  82. Fujii, H. & Miwa, S. Other erythrocyte enzyme deficiencies associated with non-haematological symptoms: phosphoglycerate kinase and phosphofructokinase deficiency. Baillieres Best Pract. Res. Clin. Haematol. 13, 141–148 (2000).

    CAS  PubMed  Google Scholar 

  83. Spiegel, R. et al. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromuscul. Disord. 19, 207–211 (2009).

    PubMed  Google Scholar 

  84. Sotiriou, E., Greene, P., Krishna, S., Hirano, M. & DiMauro, S. Myopathy and parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve 41, 707–710 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tamai, M. et al. Phosphoglycerate kinase deficiency due to a novel mutation (c. 1180A>G) manifesting as chronic hemolytic anemia in a Japanese boy. Int. J. Hematol. 100, 393–397 (2014).

    CAS  PubMed  Google Scholar 

  86. Miyajima, H., Takahashi, Y. & Kaneko, E. Characterization of the oxidative metabolism in lactate dehydrogenase A deficiency. Intern. Med. 34, 502–506 (1995).

    CAS  PubMed  Google Scholar 

  87. Kanno, T. & Maekawa, M. Lactate dehydrogenase M-subunit deficiencies: clinical features, metabolic background, and genetic heterogeneities. Muscle Nerve Suppl. 3, S54–S60 (1995).

    CAS  PubMed  Google Scholar 

  88. Hidaka, K. et al. First case of missense mutation (LDH-H:R171P) in exon 4 of the lactate dehydrogenase gene detected in a Japanese patient. J. Hum. Genet. 44, 69–72 (1999).

    CAS  PubMed  Google Scholar 

  89. Akman, H. et al. Late-onset polyglucosan body myopathy in five patients with a homozygous mutation in GYG1. Neuromuscul. Disord. 26, 16–20 (2016).

    PubMed  Google Scholar 

  90. Sukigara, S. et al. Muscle glycogen storage disease 0 presenting recurrent syncope with weakness and myalgia. Neuromuscul. Disord. 22, 162–165 (2012).

    PubMed  Google Scholar 

  91. Malfatti, E. et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann. Neurol. 76, 891–898 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nilsson, J. et al. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann. Neurol. 74, 914–919 (2013).

    CAS  PubMed  Google Scholar 

  93. Kollberg, G. et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N. Engl. J. Med. 11, 1507–1514 (2007).

    Google Scholar 

  94. Hedberg-Oldfors, C. & Oldfors, A. Polyglucosan storage myopathies. Mol. Aspects Med. 46, 85–100 (2015).

    CAS  PubMed  Google Scholar 

  95. Quinlivan, R. et al. Report on the EUROMAC McArdle testing exercise workshop. Madrid, Spain, 11–12 July 2014. Neuromuscul. Disord. 25, 739–745 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the European Union for funding the EUROMAC network and NHS England for funding our nationally commissioned service. We wish to thank the Association for Glycogen Storage Disease UK (AGSD-UK) for their continuing support, as well as Muscular Dystrophy UK (MDUK), which is currently funding a trial of valproate in McArdle disease.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Richard Godfrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

EUROMAC

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godfrey, R., Quinlivan, R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol 12, 393–402 (2016). https://doi.org/10.1038/nrneurol.2016.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing