Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive and neurodevelopmental comorbidities in paediatric epilepsy

Key Points

  • Working memory and processing speed are often impaired in children with epilepsy, even in those with intact general cognitive abilities, and can adversely affect learning and problem-solving

  • Attention deficit–hyperactivity disorder, primarily of the inattentive type, is seen in 28–70% of people with epilepsy and is common among children with epilepsy; the diagnosis is often delayed in individuals with epilepsy

  • Despite favourable seizure outcomes, people with genetic generalized epilepsy have cognitive and behavioural comorbidities suggestive of frontal lobe dysfunction, which have an adverse effect on long-term psychosocial outcome

  • In individuals with focal epilepsy arising from a single focus, the spectrum of neurocognitive disability is broad, owing to dysfunction of the epileptogenic zone as well as the more-extensive networks connecting with this zone

  • The underlying aetiology of seizures has a substantial causative role in the development of comorbidities, and frequent seizures and/or interictal epileptiform discharges may further exacerbate neurocognitive dysfunction

  • Neuropsychological testing is the gold standard for evaluation of cognitive comorbidities; in addition, formal screening questionnaires completed by parents and/or children are feasible and well received, and enable widespread screening

Abstract

Cognitive and behavioural comorbidities are often seen in children with epilepsy, and are more common and severe in refractory epilepsy. These comorbidities are associated with worse quality of life, increased behavioural and language problems and worse social skills, all of which adversely affect long-term psychosocial functioning. To enable early intervention and therapy, children and teens with epilepsy should be periodically screened for cognitive comorbidities. The location of the epileptic focus can, to a certain degree, predict the type(s) of comorbidity; however, the spectrum of disability is often broad, presumably because focal perturbations can cause network dysfunction. Comorbidities often result from underlying structural or functional pathology that has led to seizures. In selected cases, therapy targeting the underlying cause, such as the ketogenic diet for GLUT1 deficiency syndromes, may be remarkably effective in ameliorating both seizures and cognitive concerns. In many cases, however, cognitive impairment persists despite seizure control. In epileptic encephalopathies, frequent seizures and/or interictal epileptiform abnormalities exacerbate neurocognitive dysfunction, owing to synaptic reorganization or impaired neurogenesis, or to other effects on developing neural circuits, and prompt initiation of effective antiepileptic therapy is essential to limit cognitive comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between seizures and comorbidities.

Similar content being viewed by others

References

  1. Ghacibeh, G. A. & Fields, C. Interictal epileptiform activity and autism. Epilepsy Behav. 47, 158–162 (2015).

    Article  PubMed  Google Scholar 

  2. Reilly, C. et al. Neurobehavioral comorbidities in children with active epilepsy: a population-based study. Pediatrics 133, e1586–e1593 (2014).

    Article  PubMed  Google Scholar 

  3. Levisohn, P. M. et al. Neurocognitive effects of adjunctive levetiracetam in children with partial-onset seizures: a randomized, double-blind, placebo-controlled, noninferiority trial. Epilepsia 50, 2377–2389 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Ortinski, P. & Meador, K. J. Cognitive side effects of antiepileptic drugs. Epilepsy Behav. 5, S60–S65 (2004).

    Article  PubMed  Google Scholar 

  5. Loring, D. W. & Meador, K. J. Cognitive side effects of antiepileptic drugs in children. Neurology 62, 872–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Glauser, T. A. et al. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia 54, 141–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ketter, T. A. et al. Felbamate monotherapy has stimulant-like effects in patients with epilepsy. Epilepsy Res. 23, 129–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Parisi, P. et al. The relationship between sleep and epilepsy: the effect on cognitive functioning in children. Dev. Med. Child Neurol. 52, 805–810 (2010).

    Article  PubMed  Google Scholar 

  9. Berg, A. T. et al. Global cognitive function in children with epilepsy: a community-based study. Epilepsia 49, 608–614 (2008).

    Article  PubMed  Google Scholar 

  10. Andell, E. et al. The incidence of unprovoked seizures and occurrence of neurodevelopmental comorbidities in children at the time of their first epileptic seizure and during the subsequent six months. Epilepsy Res. 113, 140–150 (2015).

    Article  PubMed  Google Scholar 

  11. Berl, M. M. et al. Speed and complexity characterize attention problems in children with localization-related epilepsy. Epilepsia 56, 833–840 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Beghi, M., Cornaggia, C. M., Frigeni, B. & Beghi, E. Learning disorders in epilepsy. Epilepsia 47 (Suppl. 2), 14–18 (2006).

    Article  PubMed  Google Scholar 

  13. Gottlieb, L., Zelko, F. A., Kim, D. S. & Nordli, D. R. Cognitive proficiency in pediatric epilepsy. Epilepsy Behav. 23, 146–151 (2012).

    Article  PubMed  Google Scholar 

  14. Rathouz, P. J. et al. Cognitive development in children with new onset epilepsy. Dev. Med. Child Neurol. 56, 635–641 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berg, A. T. et al. Residual cognitive effects of uncomplicated idiopathic and cryptogenic epilepsy. Epilepsy Behav. 13, 614–619 (2008).

    Article  PubMed  Google Scholar 

  16. Jackson, D. C. et al. The neuropsychological and academic substrate of new/recent-onset epilepsies. J. Pediatr. 162, 1047–1053. e1 (2013).

    Article  PubMed  Google Scholar 

  17. Tuchman, R. F., Rapin, I. & Shinnar, S. Autistic and dysphasic children. II: epilepsy. Pediatrics 88, 1219–1225 (1991).

    CAS  PubMed  Google Scholar 

  18. Berg, A. T., Plioplys, S. & Tuchman, R. Risk and correlates of autism spectrum disorder in children with epilepsy: a community-based study. J. Child Neurol. 26, 540–547 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reilly, C. et al. Features of autism spectrum disorder (ASD) in childhood epilepsy: a population-based study. Epilepsy Behav. 42, 86–92 (2015).

    Article  PubMed  Google Scholar 

  20. El Achkar, C. M. & Spence, S. J. Clinical characteristics of children and young adults with co-occurring autism spectrum disorder and epilepsy. Epilepsy Behav. 47, 183–190 (2015).

    Article  PubMed  Google Scholar 

  21. Lee, B. H., Smith, T. & Paciorkowski, A. R. Autism spectrum disorder and epilepsy: disorders with a shared biology. Epilepsy Behav. 47, 191–201 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Williams, A. E., Giust, J. M., Kronenberger, W. G. & Dunn, D. W. Epilepsy and attention-deficit hyperactivity disorder: links, risks, and challenges. Neuropsychiatr. Dis. Treat. 12, 287–296 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Davis, S. M. et al. Epilepsy in children with attention-deficit/hyperactivity disorder. Pediatr. Neurol. 42, 325–330 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kwong, K. L. et al. Attention deficit hyperactivity disorder in adolescents with epilepsy. Pediatr. Neurol. 57, 56–63 (2016).

    Article  PubMed  Google Scholar 

  25. Almane, D. et al. Brief clinical screening for academic underachievement in new-onset childhood epilepsy: utility and longitudinal results. Epilepsy Behav. 43, 117–121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hermann, B. et al. Children with new-onset epilepsy: neuropsychological status and brain structure. Brain 129, 2609–2619 (2006).

    Article  PubMed  Google Scholar 

  27. McNelis, A. M., Dunn, D. W., Johnson, C. S., Austin, J. K. & Perkins, S. M. Academic performance in children with new-onset seizures and asthma: a prospective study. Epilepsy Behav. 10, 311–318 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jones, J. E. et al. Psychiatric comorbidity in children with new onset epilepsy. Dev. Med. Child Neurol. 49, 493–497 (2007).

    Article  PubMed  Google Scholar 

  29. Hermann, B. et al. The frequency, complications and aetiology of ADHD in new onset paediatric epilepsy. Brain 130, 3135–3148 (2007).

    Article  PubMed  Google Scholar 

  30. Austin, J. K. et al. Recurrent seizures and behavior problems in children with first recognized seizures: a prospective study. Epilepsia 43, 1564–1573 (2002).

    Article  PubMed  Google Scholar 

  31. Austin, J. K. et al. Behavior problems in children at time of first recognized seizure and changes over the following 3 years. Epilepsy Behav. 21, 373–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oostrom, K. J. et al. Behavioral problems in children with newly diagnosed idiopathic or cryptogenic epilepsy attending normal schools are in majority not persistent. Epilepsia 44, 97–106 (2003).

    Article  PubMed  Google Scholar 

  33. Dunn, D. W., Austin, J. K., Caffrey, H. M. & Perkins, S. M. A prospective study of teachers' ratings of behavior problems in children with new-onset seizures. Epilepsy Behav. 4, 26–35 (2003).

    Article  PubMed  Google Scholar 

  34. Oostrom, K. J. et al. Three to four years after diagnosis: cognition and behaviour in children with 'epilepsy only'. A prospective, controlled study. Brain 128, 1546–1555 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Hermann, B. P. et al. Brain development in children with new onset epilepsy: a prospective controlled cohort investigation. Epilepsia 51, 2038–2046 (2010).

    Article  PubMed  Google Scholar 

  36. Lux, A. L. & Osborne, J. P. A proposal for case definitions and outcome measures in studies of infantile spasms and West syndrome: consensus statement of the West Delphi group. Epilepsia 45, 1416–1428 (2004).

    Article  PubMed  Google Scholar 

  37. Riikonen, R. S. Favourable prognostic factors with infantile spasms. Eur. J. Paediatr. Neurol. 14, 13–18 (2010).

    Article  PubMed  Google Scholar 

  38. Riikonen, R. Long-term outcome of West syndrome: a study of adults with a history of infantile spasms. Epilepsia 37, 367–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Kivity, S. et al. Long-term cognitive outcomes of a cohort of children with cryptogenic infantile spasms treated with high-dose adrenocorticotropic hormone. Epilepsia 45, 255–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Bitton, J. Y. et al. Does treatment have an impact on incidence and risk factors for autism spectrum disorders in children with infantile spasms? Epilepsia 56, 856–863 (2015).

    Article  PubMed  Google Scholar 

  41. Riikonen, R. & Amnell, G. Psychiatric disorders in children with earlier infantile spasms. Dev. Med. Child Neurol. 23, 747–760 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Saemundsen, E., Ludvigsson, P. & Rafnsson, V. Autism spectrum disorders in children with a history of infantile spasms: a population-based study. J. Child Neurol. 22, 1102–1107 (2007).

    Article  PubMed  Google Scholar 

  43. Cusmai, R., Moavero, R., Bombardieri, R., Vigevano, F. & Curatolo, P. Long-term neurological outcome in children with early-onset epilepsy associated with tuberous sclerosis. Epilepsy Behav. 22, 735–739 (2011).

    Article  PubMed  Google Scholar 

  44. Sato, A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol. Disord. Drug Targets 15, 533–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nabbout, R. et al. Encephalopathy in children with Dravet syndrome is not a pure consequence of epilepsy. Orphanet J. Rare Dis. 8, 176 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Villeneuve, N. et al. Cognitive and adaptive evaluation of 21 consecutive patients with Dravet syndrome. Epilepsy Behav. 31, 143–148 (2014).

    Article  PubMed  Google Scholar 

  47. Ragona, F. et al. Cognitive development in Dravet syndrome: a retrospective, multicenter study of 26 patients. Epilepsia 52, 386–392 (2011).

    Article  PubMed  Google Scholar 

  48. Kelley, S. A. & Kossoff, E. H. Doose syndrome (myoclonic-astatic epilepsy): 40 years of progress. Dev. Med. Child Neurol. 52, 988–993 (2010).

    Article  PubMed  Google Scholar 

  49. Caraballo, R. H., Chamorro, N., Darra, F., Fortini, S. & Arroyo, H. Epilepsy with myoclonic atonic seizures: an electroclinical study of 69 patients. Pediatr. Neurol. 48, 355–362 (2013).

    Article  PubMed  Google Scholar 

  50. Trivisano, M. et al. Myoclonic astatic epilepsy: an age-dependent epileptic syndrome with favorable seizure outcome but variable cognitive evolution. Epilepsy Res. 97, 133–141 (2011).

    Article  PubMed  Google Scholar 

  51. Arzimanoglou, A. et al. Lennox–Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol. 8, 82–93 (2009).

    Article  PubMed  Google Scholar 

  52. Camfield, P. R. Definition and natural history of Lennox–Gastaut syndrome. Epilepsia 52 (Suppl. 5), 3–9 (2011).

    Article  PubMed  Google Scholar 

  53. Kim, H. J. et al. Long-term prognosis of patients with Lennox–Gastaut syndrome in recent decades. Epilepsy Res. 110, 10–19 (2015).

    Article  PubMed  Google Scholar 

  54. Ferlazzo, E. et al. Lennox–Gastaut syndrome in adulthood: clinical and EEG features. Epilepsy Res. 89, 271–277 (2010).

    Article  PubMed  Google Scholar 

  55. Goldsmith, I. L., Zupanc, M. L. & Buchhalter, J. R. Long-term seizure outcome in 74 patients with Lennox–Gastaut syndrome: effects of incorporating MRI head imaging in defining the cryptogenic subgroup. Epilepsia 41, 395–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Kieffer-Renaux, V., Kaminska, A. & Dulac, O. in Neuropsychology of Childhood Epilepsy (eds Jambaque, I. & Dulac, O.) 185–190 (Kluwer Academic, 2001).

    Book  Google Scholar 

  57. Blume, W. T. Lennox–Gastaut syndrome: potential mechanisms of cognitive regression. Ment. Retard. Dev. Disabil. Res. Rev. 10, 150–153 (2004).

    Article  PubMed  Google Scholar 

  58. Sanchez Fernandez, I. et al. Continuous spikes and waves during sleep: electroclinical presentation and suggestions for management. Epilepsy Res. Treat. 2013, 583531 (2013).

    PubMed  PubMed Central  Google Scholar 

  59. van Hout, A. in Neuropsychology of childhood epilepsy ( eds Jambaque, I. & Dulac, O. ) 191–198 (Kluwer Academic, 2001).

  60. Urbain, C., Di Vincenzo, T., Peigneux, P. & Van Bogaert, P. Is sleep-related consolidation impaired in focal idiopathic epilepsies of childhood? A pilot study. Epilepsy Behav. 22, 380–384 (2011).

    Article  PubMed  Google Scholar 

  61. Landau, W. M. & Kleffner, F. R. Syndrome of acquired aphasia with convulsive disorder in children. Neurology 7, 523–530 (1957).

    Article  CAS  PubMed  Google Scholar 

  62. De Tiege, X. et al. Metabolic evidence for remote inhibition in epilepsies with continuous spike–waves during sleep. Neuroimage 40, 802–810 (2008).

    Article  PubMed  Google Scholar 

  63. Liukkonen, E. et al. Long-term outcome of 32 children with encephalopathy with status epilepticus during sleep, or ESES syndrome. Epilepsia 51, 2023–2032 (2010).

    Article  PubMed  Google Scholar 

  64. Wirrell, E. C. Benign epilepsy of childhood with centrotemporal spikes. Epilepsia 39, S32–S41 (1998).

    Article  PubMed  Google Scholar 

  65. Lin, J. J. et al. Striatal hypertrophy and its cognitive effects in new-onset benign epilepsy with centrotemporal spikes. Epilepsia 53, 677–685 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Datta, A. N. et al. Cognitive impairment and cortical reorganization in children with benign epilepsy with centrotemporal spikes. Epilepsia 54, 487–494 (2013).

    Article  PubMed  Google Scholar 

  67. Deonna, T. et al. Benign partial epilepsy of childhood: a longitudinal neuropsychological and EEG study of cognitive function. Dev. Med. Child Neurol. 42, 595–603 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Loiseau, P. et al. Long-term prognosis in two forms of childhood epilepsy: typical absence seizures and epilepsy with rolandic (centrotemporal) EEG foci. Ann. Neurol. 13, 642–648 (1983).

    Article  CAS  PubMed  Google Scholar 

  69. Specchio, N. et al. Panayiotopoulos syndrome: a clinical, EEG, and neuropsychological study of 93 consecutive patients. Epilepsia 51, 2098–2107 (2010).

    Article  PubMed  Google Scholar 

  70. Hodges, S. L., Gabriel, M. T. & Perry, M. S. Neuropsychological findings associated with Panayiotopoulos syndrome in three children. Epilepsy Behav. 54, 158–162 (2016).

    Article  PubMed  Google Scholar 

  71. Seneviratne, U., Cook, M. & D'Souza, W. The prognosis of idiopathic generalized epilepsy. Epilepsia 53, 2079–2090 (2012).

    Article  PubMed  Google Scholar 

  72. Besag, F. et al. Psychiatric and Behavioural Disorders in Children with Epilepsy (ILAE Task Force Report): behavioural and psychiatric disorders associated with childhood epilepsy syndromes. Epilept. Disord. http://dx.doi.org/10.1684/epd.2016.0816 (2016).

  73. Caplan, R. et al. Childhood absence epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia 49, 1838–1846 (2008).

    Article  PubMed  Google Scholar 

  74. Vega, C. et al. Differentiation of attention-related problems in childhood absence epilepsy. Epilepsy Behav. 19, 82–85 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vega, C. et al. Symptoms of anxiety and depression in childhood absence epilepsy. Epilepsia 52, e70–e74 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Caplan, R. et al. Depression and anxiety disorders in pediatric epilepsy. Epilepsia 46, 720–730 (2005).

    Article  PubMed  Google Scholar 

  77. Schmitz, B., Yacubian, E. M., Feucht, M., Hermann, B. & Trimble, M. Neuropsychology and behavior in juvenile myoclonic epilepsy. Epilepsy Behav. 28, S72–S73 (2013).

    Article  PubMed  Google Scholar 

  78. Baykan, B. et al. Myoclonic seizures subside in the fourth decade in juvenile myoclonic epilepsy. Neurology 70, 2123–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Wirrell, E. C. et al. Long-term psychosocial outcome in typical absence epilepsy. Sometimes a wolf in sheeps' clothing. Arch. Pediatr. Adolesc. Med. 151, 152–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Camfield, C. S. & Camfield, P. R. Juvenile myoclonic epilepsy 25 years after seizure onset: a population-based study. Neurology 73, 1041–1045 (2009).

    Article  PubMed  Google Scholar 

  81. Russo, E. et al. Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 52, 1341–1350 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Jones, N. C. et al. Elevated anxiety and depressive-like behavior in a rat model of genetic generalized epilepsy suggesting common causation. Exp. Neurol. 209, 254–260 (2008).

    Article  PubMed  Google Scholar 

  83. Tosun, D., Siddarth, P., Toga, A. W., Hermann, B. & Caplan, R. Effects of childhood absence epilepsy on associations between regional cortical morphometry and aging and cognitive abilities. Hum. Brain Mapp. 32, 580–591 (2011).

    Article  PubMed  Google Scholar 

  84. Nicolai, J. et al. The cognitive effects of interictal epileptiform EEG discharges and short nonconvulsive epileptic seizures. Epilepsia 53, 1051–1059 (2012).

    Article  PubMed  Google Scholar 

  85. Porter, R. J. & Penry, J. K. Responsiveness at the onset of spike–wave bursts. Electroencephalogr. Clin. Neurophysiol. 34, 239–245 (1973).

    Article  CAS  PubMed  Google Scholar 

  86. Rzezak, P., Valente, K. D. & Duchowny, M. S. Temporal lobe epilepsy in children: executive and mnestic impairments. Epilepsy Behav. 31, 117–122 (2014).

    Article  PubMed  Google Scholar 

  87. Jambaque, I., Pinabiaux, C. & Lassonde, M. Cognitive disorders in pediatric epilepsy. Handb. Clin. Neurol. 111, 691–695 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Lin, J. J., Mula, M. & Hermann, B. P. Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet 380, 1180–1192 (2012).

    Article  PubMed  Google Scholar 

  89. Elger, C. E., Helmstaedter, C. & Kurthen, M. Chronic epilepsy and cognition. Lancet Neurol. 3, 663–672 (2004).

    Article  PubMed  Google Scholar 

  90. Hermann, B. et al. The neurodevelopmental impact of childhood-onset temporal lobe epilepsy on brain structure and function. Epilepsia 43, 1062–1071 (2002).

    Article  PubMed  Google Scholar 

  91. Wilson, S. J. et al. Developmental outcomes of childhood-onset temporal lobe epilepsy: a community-based study. Epilepsia 53, 1587–1596 (2012).

    Article  PubMed  Google Scholar 

  92. Maulisova, A. et al. Atypical language representation in children with intractable temporal lobe epilepsy. Epilepsy Behav. 58, 91–96 (2016).

    Article  PubMed  Google Scholar 

  93. Saltzman-Benaiah, J., Scott, K. & Smith, M. L. Factors associated with atypical speech representation in children with intractable epilepsy. Neuropsychologia 41, 1967–1974 (2003).

    Article  PubMed  Google Scholar 

  94. Gonzalez, L. M., Anderson, V. A., Wood, S. J., Mitchell, L. A. & Harvey, A. S. The localization and lateralization of memory deficits in children with temporal lobe epilepsy. Epilepsia 48, 124–132 (2007).

    Article  PubMed  Google Scholar 

  95. Igarashi, K. et al. Wisconsin card sorting test in children with temporal lobe epilepsy. Brain Dev. 24, 174–178 (2002).

    Article  PubMed  Google Scholar 

  96. Drake, M., Allegri, R. F. & Thomson, A. Executive cognitive alteration of prefrontal type in patients with mesial temporal lobe epilepsy. Medicina (B. Aires) 60, 453–456 (article in Spanish) (2000).

    CAS  Google Scholar 

  97. Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Laurent, A. et al. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study. Epileptic Disord. 16, 456–470 (2014).

    PubMed  Google Scholar 

  99. Golouboff, N. et al. Impaired facial expression recognition in children with temporal lobe epilepsy: impact of early seizure onset on fear recognition. Neuropsychologia 46, 1415–1428 (2008).

    Article  PubMed  Google Scholar 

  100. Hermann, B., Seidenberg, M. & Jones, J. The neurobehavioural comorbidities of epilepsy: can a natural history be developed? Lancet Neurol. 7, 151–160 (2008).

    Article  PubMed  Google Scholar 

  101. Salpekar, J. A. et al. Psychiatric symptoms in children prior to epilepsy surgery differ according to suspected seizure focus. Epilepsia 54, 1074–1082 (2013).

    Article  PubMed  Google Scholar 

  102. Englot, D. J., Breshears, J. D., Sun, P. P., Chang, E. F. & Auguste, K. I. Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients. J. Neurosurg. Pediatr. 12, 126–133 (2013).

    Article  PubMed  Google Scholar 

  103. Braakman, H. M. et al. Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy. Epilepsia 54, 446–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Longo, C. A., Kerr, E. N. & Smith, M. L. Executive functioning in children with intractable frontal lobe or temporal lobe epilepsy. Epilepsy Behav. 26, 102–108 (2013).

    Article  PubMed  Google Scholar 

  105. Exner, C. et al. Neuropsychological performance in frontal lobe epilepsy. Seizure 11, 20–32 (2002).

    Article  PubMed  Google Scholar 

  106. Hernandez, M. T. et al. Attention, memory, and behavioral adjustment in children with frontal lobe epilepsy. Epilepsy Behav. 4, 522–536 (2003).

    Article  PubMed  Google Scholar 

  107. Helmstaedter, C., Kemper, B. & Elger, C. E. Neuropsychological aspects of frontal lobe epilepsy. Neuropsychologia 34, 399–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. McDonald, C. R., Delis, D. C., Kramer, J. H., Tecoma, E. S. & Iragui, V. J. A componential analysis of proverb interpretation in patients with frontal lobe epilepsy and temporal lobe epilepsy: relationships with disease-related factors. Clin. Neuropsychol. 22, 480–496 (2008).

    Article  PubMed  Google Scholar 

  109. Battaglia, D. et al. Posterior resection for childhood lesional epilepsy: neuropsychological evolution. Epilepsy Behav. 23, 131–137 (2012).

    Article  PubMed  Google Scholar 

  110. Knopman, A. A. et al. The cognitive profile of occipital lobe epilepsy and the selective association of left temporal lobe hypometabolism with verbal memory impairment. Epilepsia 55, e80–e84 (2014).

    Article  PubMed  Google Scholar 

  111. Korff, C. M., Brunklaus, A. & Zuberi, S. M. Epileptic activity is a surrogate for an underlying etiology and stopping the activity has a limited impact on developmental outcome. Epilepsia 56, 1477–1481 (2015).

    Article  PubMed  Google Scholar 

  112. Chapman, K. E., Specchio, N., Shinnar, S. & Holmes, G. L. Seizing control of epileptic activity can improve outcome. Epilepsia 56, 1482–1485 (2015).

    Article  PubMed  Google Scholar 

  113. Hesdorffer, D. C., Hauser, W. A., Olafsson, E., Ludvigsson, P. & Kjartansson, O. Depression and suicide attempt as risk factors for incident unprovoked seizures. Ann. Neurol. 59, 35–41 (2006).

    Article  PubMed  Google Scholar 

  114. Racine, R. J., Steingart, M. & McIntyre, D. C. Development of kindling-prone and kindling-resistant rats: selective breeding and electrophysiological studies. Epilepsy Res. 35, 183–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Nissenkorn, A. et al. Epilepsy in Rett syndrome — lessons from the Rett networked database. Epilepsia 56, 569–576 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Loddenkemper, T. et al. Epilepsy surgery in children with electrical status epilepticus in sleep. Neurosurgery 64, 328–337; discussion 337 (2009).

    Article  PubMed  Google Scholar 

  117. Freitag, H. & Tuxhorn, I. Cognitive function in preschool children after epilepsy surgery: rationale for early intervention. Epilepsia 46, 561–567 (2005).

    Article  PubMed  Google Scholar 

  118. Bender, A. C. et al. Focal Scn1a knockdown induces cognitive impairment without seizures. Neurobiol. Dis. 54, 297–307 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Caplan, R. et al. Frontal and temporal volumes in childhood absence epilepsy. Epilepsia 50, 2466–2472 (2009).

    Article  PubMed  Google Scholar 

  120. Gillberg, C. The ESSENCE in child psychiatry: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations. Res. Dev. Disabil. 31, 1543–1551 (2010).

    Article  PubMed  Google Scholar 

  121. Kleen, J. K., Scott, R. C., Holmes, G. L. & Lenck-Santini, P. P. Hippocampal interictal spikes disrupt cognition in rats. Ann. Neurol. 67, 250–257 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ebus, S. et al. Cognitive effects of interictal epileptiform discharges in children. Eur. J. Paediatr. Neurol. 16, 697–706 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Go, C. Y. et al. Evidence-based guideline update: medical treatment of infantile spasms. Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 78, 1974–1980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Arunkumar, G., Wyllie, E., Kotagal, P., Ong, H. T. & Gilliam, F. Parent- and patient-validated content for pediatric epilepsy quality-of-life assessment. Epilepsia 41, 1474–1484 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Kobau, R. et al. Epilepsy surveillance among adults — 19 States, Behavioral Risk Factor Surveillance System, 2005. MMWR Surveill. Summ. 57, 1–20 (2008).

    PubMed  Google Scholar 

  126. Reilly, C. et al. Academic achievement in school-aged children with active epilepsy: a population-based study. Epilepsia 55, 1910–1917 (2014).

    Article  PubMed  Google Scholar 

  127. Nolan, M. A. et al. Memory function in childhood epilepsy syndromes. J. Paediatr. Child Health 40, 20–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Jocic-Jakubi, B. & Jovic, N. J. Verbal memory impairment in children with focal epilepsy. Epilepsy Behav. 9, 432–439 (2006).

    Article  PubMed  Google Scholar 

  129. Fastenau, P. S., Jianzhao, S., Dunn, D. W. & Austin, J. K. Academic underachievement among children with epilepsy: proportion exceeding psychometric criteria for learning disability and associated risk factors. J. Learn. Disabil. 41, 195–207 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hamiwka, L., Jones, J. E., Salpekar, J. & Caplan, R. Child psychiatry. Epilepsy Behav. 22, 38–46 (2011).

    Article  PubMed  Google Scholar 

  131. Baca, C. B., Vickrey, B. G., Hays, R. D., Vassar, S. D. & Berg, A. T. Differences in child versus parent reports of the child's health-related quality of life in children with epilepsy and healthy siblings. Value Health 13, 778–786 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Eddy, C. M. et al. Quality of life in young people with treatment-responsive epilepsy: a controlled study. Epilepsy Behav. 19, 623–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Ferro, M. A. et al. Trajectories of health-related quality of life in children with epilepsy: a cohort study. Epilepsia 54, 1889–1897 (2013).

    Article  PubMed  Google Scholar 

  134. Wirrell, E. C. Predicting pharmacoresistance in pediatric epilepsy. Epilepsia 54 (Suppl. 2), 19–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Hitiris, N., Mohanraj, R., Norrie, J., Sills, G. J. & Brodie, M. J. Predictors of pharmacoresistant epilepsy. Epilepsy Res. 75, 192–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. England, M. J., Liverman, C. T., Schultz, A. M. & Strawbridge, L. M. Epilepsy across the spectrum: promoting health and understanding. A summary of the Institute of Medicine report. Epilepsy Behav. 25, 266–276 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Brooks, B. L. & Sherman, E. M. Computerized neuropsychological testing to rapidly evaluate cognition in pediatric patients with neurologic disorders. J. Child Neurol. 27, 982–991 (2012).

    Article  PubMed  Google Scholar 

  138. Triplett, R. L. & Asato, M. R. Brief cognitive and behavioral screening in children with new-onset epilepsy: a pilot feasibility trial. Pediatr. Neurol. 52, 49–55 (2015).

    Article  PubMed  Google Scholar 

  139. Eom, S., Dezort, C., Fisher, B., Zelko, F. & Berg, A. T. A simple behavioral-developmental checklist versus formal screening for children in an epilepsy center. Epilepsy Behav. 46, 84–87 (2015).

    Article  PubMed  Google Scholar 

  140. Eom, S., Fisher, B., Dezort, C. & Berg, A. T. Routine developmental, autism, behavioral, and psychological screening in epilepsy care settings. Dev. Med. Child Neurol. 56, 1100–1105 (2014).

    Article  PubMed  Google Scholar 

  141. Bone, M. E., Rubin, P. & Asato, M. R. Brief Computerized Screening Detects Cognitive Changes in Children with Epilepsy (abstract 1.293) (American Epilepsy Society, 2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.C.N., L.D.H. and E.C.W. contributed to discussion of content. All authors contributed to searching data for the article, and writing, reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Elaine C. Wirrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Full Scale Intelligence Quotient (FSIQ)

A theoretical construct used to describe one's complete cognitive capacity as measured by standardized tests, such as the Wechsler Intelligence Scale for Children, which is the most commonly used measure in paediatrics.

Symptomatic epilepsy

Epilepsy is called 'symptomatic' when it has a known or implied cause, such as a traumatic brain injury, tumour, infection or developmental delay.

West syndrome

West syndrome, also referred to as epileptic spasms or infantile spasms, is an epilepsy syndrome characterized by the triad of infantile spasms, hypsarrhythmia and developmental delay, with an onset typically at about 3–24 months of age.

Behavioural problems

Continued problems with behaviour that are unusually severe and can themselves be problematic for development; severe behavioural problems can warrant a diagnosis of oppositional defiant disorder (typically seen in children) or conduct disorder (teenagers and adolescents).

Internalizing behaviours

Negative behaviours and attitudes directed towards the self, such as anxiety, depression, social withdrawal, self-harm and suicidal behaviour.

Periventricular leukomalacia

A disorder that is particularly common in premature infants, and is caused by injury to the white matter adjacent to the lateral ventricles owing to lack of oxygen or blood flow, or by infection in utero or early infancy.

Dravet syndrome

Dravet syndrome is almost always attributed to SCN1A mutations and begins before 18 months of age with hemiclonic seizures that are often prolonged and triggered by fever. Around 2–5 years of age, myoclonic seizures, atypical absence seizures and focal dyscognitive seizures develop.

Epileptic encephalopathy with continuous spike-and-wave during slow-wave sleep

(CSWS). A syndrome characterized by continuous spike-and-wave EEG pattern during slow-wave sleep, progressive decline in cognitive and behavioural functioning, and psychiatric symptoms.

Landau–Kleffner syndrome ((LKS)

A syndrome characterized by subacute onset of acquired aphasia in a child with normal prior development and cognition; in this disorder, EEG shows marked activation of epileptiform activity in sleep.

Eloquent cortex

The brain areas that have essential roles in, for example, speech and linguistic ability, motor control, or sensory processing. Lesioning or dysfunction of these brain areas manifests as deficits in these functions.

Benign epilepsy with centrotemporal spikes (BECTS)

A self-limiting, pharmacoresponsive epilepsy seen in children of early school age that is characterized by brief hemifacial seizures, which can secondarily generalize during sleep.

Panayiotopoulos syndrome

A self-limited epilepsy characterized by autonomic, sometimes prolonged, seizures that typically begin in the preschool years.

Childhood absence epilepsy (CAE)

Presents in mid childhood (4–10 years) with very frequent (20–50 per day) typical absence seizures and an EEG showing 3Hz generalized spike-and-wave discharges.

Juvenile absence epilepsy (JAE)

Presents in late childhood or adolescence (10–16 years) with less frequent (one or two per day) typical absence seizures, generalized tonic–clonic seizures that typically begin months to years after absences, and an EEG showing 3–4 Hz generalized spike-and-wave discharges.

Juvenile myoclonic epilepsy (JME)

A condition that presents in adolescence or early adulthood with myoclonic jerks, which typically occur in the early morning and are triggered by sleep deprivation, generalized tonic–clonic seizures, and an EEG showing generalized spike-and-wave discharges, often with a photoparoxysmal response.

Seizure kindling studies

Rats can be divided into two groups on the basis of how quickly seizures can be kindled: animals who are more epilepsy-prone can be kindled more quickly ('fast-kindling' rats) than those who are more epilepsy-resistant ('slow-kindling' rats).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickels, K., Zaccariello, M., Hamiwka, L. et al. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat Rev Neurol 12, 465–476 (2016). https://doi.org/10.1038/nrneurol.2016.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing