Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting inflammasomes in rheumatic diseases

Abstract

Inflammasomes are key inducers of inflammation in response to exogenous and endogenous stimuli, because they regulate the processing and secretion of the proinflammatory cytokines IL-1β and IL-18. Thus, inflammasomes have a crucial role in host defence against infection, but they can also be involved in inflammatory diseases. Indeed, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome has been shown to play a part in several inflammatory rheumatic disorders, although the mechanisms involved are better elucidated in some of these diseases than in others. In particular, the pathogenesis of cryopyrin-associated periodic syndromes and microcrystal-induced arthritides is thought to be dependent on activation of the NLRP3 inflammasome, and IL-1 inhibition has shown efficacy as a therapeutic strategy in both groups of conditions. In this Review, we describe the current understanding of the mechanisms that trigger the inflammasome, and consider the relevance of the inflammasome to a variety of rheumatic diseases. In addition, we discuss the current therapies targeting this molecular complex, as well as future therapeutic prospects.

Key Points

  • Inflammasomes are the principal mediators of IL-1β and IL-18 release by monocytes and macrophages

  • Inflammasomes are activated by a large number of cellular factors, such as calcium, potassium efflux, reactive oxygen species and ATP; this list continues to expand

  • A link between inflammasome activation and disease has been clearly established for cryopyrin-associated periodic syndromes and microcrystal-induced arthritides such as gout and basic calcium phosphate-induced calcific tendinitis

  • Several inflammatory rheumatic diseases respond to IL-1 inhibitors, which suggests that dysregulation of IL-1β production might be pathogenic

  • IL-1 inhibitors have been the main treatment for inflammasome-mediated diseases, but there might be other pathways that can be targeted therapeutically

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Priming the inflammasome.
Figure 2: Mechanisms of inflammasome activation.

Similar content being viewed by others

References

  1. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-1β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Franchi, L., Munoz-Planillo, R. & Nunez, G. Sensing and reacting to microbes through the inflammasomes. Nature Immunol. 13, 325–332 (2012).

    Article  CAS  Google Scholar 

  3. Gross, O., Thomas, C. J., Guarda, G. & Tschopp, J. The inflammasome: an integrated view. Immunol. Rev. 243, 136–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).

    Article  PubMed  Google Scholar 

  6. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Willingham, S. B. et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J. Immunol. 183, 2008–2015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller, A. F. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586, 585–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Menu, P. et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3, e261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naik, E. & Dixit, V. M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 208, 417–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rubartelli, A., Gattorno, M., Netea, M. G. & Dinarello, C. A. Interplay between redox status and inflammasome activation. Trends Immunol. 32, 559–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA 108, 14867–14872 (2011).

    Article  PubMed  Google Scholar 

  15. Pazar, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Cassel, S. L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl Acad. Sci. USA 105, 9035–9040 (2008).

    Article  PubMed  Google Scholar 

  17. Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bylund, J. et al. Enhanced inflammatory responses of chronic granulomatous disease leukocytes involve ROS-independent activation of NF-κB. Eur. J. Immunol. 37, 1087–1096 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. van de Veerdonk, F. L. et al. Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. Proc. Natl Acad. Sci. USA 107, 3030–3033 (2010).

    Article  PubMed  Google Scholar 

  20. Meissner, F., Molawi, K. & Zychlinsky, A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 9, 866–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Pelegrin, P., Barroso-Gutierrez, C. & Surprenant, A. P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J. Immunol. 180, 7147–7157 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kanneganti, T. D. et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, G. S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rossol, M. et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat. Commun. 3, 1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shenoy, A. R. et al. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336, 481–485 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lachmann, H. J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hawkins, P. N., Lachmann, H. J., Aganna, E. & McDermott, M. F. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum. 50, 607–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Aksentijevich, I. et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 56, 1273–1285 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tassi, S. et al. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1β secretion. Proc. Natl Acad. Sci. USA 107, 9789–9794 (2010).

    Article  PubMed  Google Scholar 

  34. Hawkins, P. N., Lachmann, H. J. & McDermott, M. F. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N. Engl. J. Med. 348, 2583–2584 (2003).

    Article  PubMed  Google Scholar 

  35. Alexander, T. et al. Successful treatment of acute visual loss in Muckle-Wells syndrome with interleukin 1 receptor antagonist. Ann. Rheum. Dis. 64, 1245–1246 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoffman, H. M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Hoffman, H. M. et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364, 1779–1785 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  Google Scholar 

  39. Brydges, S. D. et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30, 875–887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meng, G., Zhang, F., Fuss, I., Kitani, A. & Strober, W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30, 860–874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonar, S. L. et al. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS ONE 7, e35979 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ter Haar, N. et al. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2011-201268.

  44. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9, R28 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. So, A., et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: Results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 62, 3064–3076 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Terkeltaub, R. et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann. Rheum. Dis. 68, 1613–1617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schumacher, H. R. Jr et al. Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study. Arthritis Care Res. 64, 1462–1470 (2012).

    Article  CAS  Google Scholar 

  49. Schlesinger, N. et al. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann. Rheum. Dis. 70, 1264–1271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Announ, N., Palmer, G., Guerne, P. A. & Gabay, C. Anakinra is a possible alternative in the treatment and prevention of acute attacks of pseudogout in end-stage renal failure. Joint Bone Spine 76, 424–426 (2009).

    Article  PubMed  Google Scholar 

  51. Zufferey, P. & So, A. A pilot study of IL-1 inhibition in acute calcific periarthritis of the shoulder. Ann. Rheum. Dis. 72, 465–467 (2013).

    Article  PubMed  Google Scholar 

  52. Pascual, E., Batlle-Gualda, E., Martinez, A., Rosas, J. & Vela, P. Synovial fluid analysis for diagnosis of intercritical gout. Ann. Intern. Med. 131, 756–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Joosten, L. A. et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 62, 3237–3248 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Purine-rich foods intake and recurrent gout attacks. Ann. Rheum. Dis. 71, 1448–1453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Choi, H. K., Atkinson, K., Karlson, E. W., Willett, W. & Curhan, G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 363, 1277–1281 (2004).

    Article  PubMed  Google Scholar 

  56. Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontalba, A. et al. Deficiency of the NF-κB inhibitor caspase activating and recruitment domain 8 in patients with rheumatoid arthritis is associated with disease severity. J. Immunol. 179, 4867–4873 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Kastbom, A. et al. Genetic variation in proteins of the cryopyrin inflammasome influences susceptibility and severity of rheumatoid arthritis (the Swedish TIRA project). Rheumatology 47, 415–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Kastbom, A., Johansson, M., Verma, D., Soderkvist, P. & Rantapaa-Dahlqvist, S. CARD8 p.C10X polymorphism is associated with inflammatory activity in early rheumatoid arthritis. Ann. Rheum. Dis. 69, 723–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ben Hamad, M. et al. Association study of CARD8 (p.C10X) and NLRP3 (p.Q705K) variants with rheumatoid arthritis in French and Tunisian populations. Int. J. Immunogenet. 39, 131–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Blomgran, R. et al. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils. PLoS ONE 7, e31326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Verma, D. et al. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1β and IL-18 production. PLoS ONE 7, e34977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolly, L. et al. Inflammatory role of ASC in antigen-induced arthritis is independent of caspase-1, NALP-3, and IPAF. J. Immunol. 183, 4003–4012 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Ippagunta, S. K. et al. Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J. Biol. Chem. 285, 12454–12462 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamazaki, H. et al. ASC plays a role in the priming phase of the immune response to type II collagen in collagen-induced arthritis. Rheumatol. Int. 32, 1625–1632 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Hasegawa, M. et al. ASC-mediated NF-κB activation leading to interleukin-8 production requires caspase-8 and is inhibited by CLARP. J. Biol. Chem. 280, 15122–15130 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Hasegawa, M. et al. Mechanism and repertoire of ASC-mediated gene expression. J. Immunol. 182, 7655–7662 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: Contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1β. Arthritis Rheum. 60, 3651–3662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guma, M. et al. Caspase 1-independent activation of interleukin-1β in neutrophil-predominant inflammation. Arthritis Rheum. 60, 3642–3650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kolly, L. et al. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology 129, 178–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rosengren, S., Hoffman, H. M., Bugbee, W. & Boyle, D. L. Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann. Rheum. Dis. 64, 708–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. van den Berg, W. B. Arguments for interleukin 1 as a target in chronic arthritis. Ann. Rheum. Dis. 59 (Suppl. 1), i81–i84 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Bougault, C. et al. Stress-induced cartilage degradation does not depend on NLRP3 inflammasome in osteoarthritis. Arthritis Rheum. 64, 3972–3981 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Said-Sadier, N., Padilla, E., Langsley, G. & Ojcius, D. M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 5, e10008 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lamkanfi, M., Malireddi, R. K. & Kanneganti, T. D. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem. 284, 20574–20581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oosting, M. et al. Borrelia species induce inflammasome activation and IL-17 production through a caspase-1-dependent mechanism. Eur. J. Immunol. 41, 172–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Pascual, V., Allantaz, F., Arce, E., Punaro, M. & Banchereau, J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J. Exp. Med. 201, 1479–1486 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Naumann, L. et al. IL1-receptor antagonist anakinra provides long-lasting efficacy in the treatment of refractory adult-onset Still's disease. Ann. Rheum. Dis. 69, 466–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Krause, K. et al. Efficacy and safety of the interleukin-1 antagonist rilonacept in Schnitzler syndrome: an open-label study. Allergy 67, 943–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Pascual, V. et al. How the study of children with rheumatic diseases identified interferon-α and interleukin-1 as novel therapeutic targets. Immunol. Rev. 223, 39–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kone-Paut, I., Sanchez, E., Le Quellec, A., Manna, R. & Touitou, I. Autoinflammatory gene mutations in Behcet's disease. Ann. Rheum. Dis. 66, 832–834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pizzirani, C. et al. Dysfunctional inflammasome in Schnitzler's syndrome. Rheumatology 48, 1304–1308 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Lachmann, H. J., Quartier, P., So, A. & Hawkins, P. N. The emerging role of interleukin-1β in autoinflammatory diseases. Arthritis Rheum. 63, 314–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Schlesinger, N. et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2011-200908.

  87. Gross, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Narayan, S. et al. Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice. Arthritis Rheum. 63, 422–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Wannamaker, W. et al. (S)-1-(S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid (2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1β and IL-18. J. Pharmacol. Exp. Ther. 321, 509–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kovarova, M. et al. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J. Immunol. 189, 2006–2016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Levinsohn, J. L. et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog. 8, e1002638 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Saiga, H. et al. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int. Immunol. 24, 637–644 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Swiss National Science Foundation (Grant 310030_130085), the Fondation Warnery and the Institute of Arthritis Research.

Author information

Authors and Affiliations

Authors

Contributions

A. So contributed to researching data for the article, discussions of content, writing the article and reviewing/editing the manuscript. A. Ives and N. Busso contributed to researching data for the article, writing the article and reviewing/editing the manuscript. L. A. B. Joosten contributed to discussions of content and writing the article.

Corresponding author

Correspondence to Alexander So.

Ethics declarations

Competing interests

A. So has received honoraria from Novartis AG for participation in advisory boards and consultant fees. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, A., Ives, A., Joosten, L. et al. Targeting inflammasomes in rheumatic diseases. Nat Rev Rheumatol 9, 391–399 (2013). https://doi.org/10.1038/nrrheum.2013.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.61

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing