Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs

Key Points

  • Inflammation and inflammation-induced catabolism (for example, involving activation of matrix metalloproteinases) are tightly controlled by Toll-like-receptor-mediated innate immune responses

  • Toll-like-receptor 4 (TLR4) binds a number of different agonists, some of which (so-called damage-associated molecular patterns) are released when tissues are damaged

  • The expression of TLR4 in cartilage is increased throughout the development of osteoarthritis (OA)

  • Many TLR4 agonists that have been identified in the joints of patients with OA can induce inflammatory responses in ex vivo tissue samples fromthese patients

  • Several pathways modulate TLR4 signalling in joint tissues, and a number of TLR4 blockers might be candidate disease-modifying OA drugs (DMOADs)

Abstract

Osteoarthritis (OA), the most common rheumatic disease, is characterized by joint-space narrowing due to progressive cartilage degradation and alterations in subchondral bone and the synovial membrane. These articular disturbances can have severe consequences, including pain, disability and loss of joint architectural integrity. Although the aetiology of OA is not understood, chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors by damage-associated molecules are thought to be involved. In this Review, we examine the relationship between Toll-like receptor 4 (TLR4) and OA in cartilage as well as in other OA-affected tissues, such as subchondral bone and synovium. We also discuss the different TLR4 agonists associated with OA and their effects in joint tissues. Finally, we describe existing and novel strategies that might be used to develop TLR4-specific disease-modifying OA drugs (DMOADs).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLR4 structure.
Figure 2: TLR4 signalling.
Figure 3: TLR4 signalling in chondrocytes.
Figure 4: Trafficking of TLR4 agonists and signalling in the joint.
Figure 5: Different strategies to target TLR4 in joint tissues.

Similar content being viewed by others

References

  1. Dvinge, H. & Bertone, P. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage 13, 769–781 (2005).

    Article  Google Scholar 

  2. Reynard, L. N. & Loughlin, J. Genetics and epigenetics of osteoarthritis. Maturitas 71, 200–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Gómez, R. et al. What's new in our understanding of the role of adipokines in rheumatic diseases? Nat. Rev. Rheumatol. 7, 528–536 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Herrero-Beaumont, G. & Roman-Blas, J. A. Osteoarthritis: Osteoporotic OA: a reasonable target for bone-acting agents. Nat. Rev. Rheumatol. 9, 448–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Scanzello, C. R., Plaas, A. & Crow, M. K. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr. Opin. Rheumatol. 20, 565–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54 (Pt 1), 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Abdollahi-Roodsaz, S., van de Loo, F. A. & van den Berg, W. B. Trapped in a vicious loop: Toll-like receptors sustain the spontaneous cytokine production by rheumatoid synovium. Arthritis Res. Ther. 13, 105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldring, S. R. & Scanzello, C. R. Plasma proteins take their toll on the joint in osteoarthritis. Arthritis Res. Ther. 14, 111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, K. et al. Toll-like receptors in inflammation, infection and cancer. Int. Immunopharmacol. 7, 1271–1285 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Keshava Prasad, T. S. et al. Human Protein Reference Database—2009 update. Nucleic Acids Res. 37, D767–D772 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Chaturvedi, A. & Pierce, S. K. How location governs Toll-like receptor signaling. Traffic 10, 621–628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gangloff, M. Different dimerisation mode for TLR4 upon endosomal acidification? Trends Biochem. Sci. 37, 92–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Da Silva Correia, J. & Ulevitch, R. J. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J. Biol. Chem. 277, 1845–1854 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. Raijmakers, R., Kraiczek, K., de Jong, A. P., Mohammed, S. & Heck, A. J. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal. Chem. 82, 824–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Medvedev, A. E. et al. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J. Biol. Chem. 282, 16042–16053 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA 95, 588–593 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, P., Zhu, F., Tong, Z. & Konstantopoulos, K. Response of chondrocytes to shear stress: antagonistic effects of the binding partners Toll-like receptor 4 and caveolin-1. FASEB J. 25, 3401–3415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kikuchi, T. et al. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via Toll-like receptors. J. Immunol. 166, 3574–3579 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Sohn, D. H. et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res. Ther. 14, R7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu-Bryan, R. & Terkeltaub, R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 62, 2004–2012 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Yang, H. et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc. Natl Acad. Sci. USA 107, 11942–11947 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frommer, K. W. et al. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2013-203755.

  27. Lee, J. Y. et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 279, 16971–16979 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Scott, P., Ma, H., Viriyakosol, S., Terkeltaub, R. & Liu-Bryan, R. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J. Immunol. 177, 6370–6378 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. De Seny, D. et al. Acute-phase serum amyloid A in osteoarthritis: regulatory mechanism and proinflammatory properties. PLoS ONE 8, e66769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsukamoto, H., Fukudome, K., Takao, S., Tsuneyoshi, N. & Kimoto, M. Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. Int. Immunol. 22, 271–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity 4, 407–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Da Silva Correia, J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129–21135 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Tsan, M.-F. & Gao, B. Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J. Endotoxin Res. 13, 6–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Marincek, B.-C. et al. Heat shock protein-antigen fusions lose their enhanced immunostimulatory capacity after endotoxin depletion. Mol. Immunol. 46, 181–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Luong, M. et al. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J. Inflamm (Lond.) 9, 11 (2012).

    Article  CAS  Google Scholar 

  38. Okamura, Y. et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276, 10229–10233 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Schelbergen, R. F. P. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Lin, S.-C., Lo, Y.-C. & Wu, H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Motshwene, P. G. et al. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284, 25404–25411 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goldring, M. B. & Goldring, S. R. Osteoarthritis. J. Cell Physiol. 213, 626–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9, 361–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanimura, N., Saitoh, S., Matsumoto, F., Akashi-Takamura, S. & Miyake, K. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res. Commun. 368, 94–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Bonham, K. S. et al. A promiscuous lipid-binding protein diversifies the subcellular sites of Toll-like receptor signal transduction. Cell 156, 705–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sillat, T. et al. Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop. 84, 585–592 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Karlsson, C. et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthritis Cartilage 18, 581–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H. A. et al. The catabolic pathway mediated by Toll-like receptors in human osteoarthritic chondrocytes. Arthritis Rheum. 54, 2152–2163 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Bobacz, K. et al. Toll-like receptors and chondrocytes: the lipopolysaccharide-induced decrease in cartilage matrix synthesis is dependent on the presence of Toll-like receptor 4 and antagonized by bone morphogenetic protein 7. Arthritis Rheum. 56, 1880–1893 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Abdollahi-Roodsaz, S. et al. Local interleukin-1-driven joint pathology is dependent on Toll-like receptor 4 activation. Am. J. Pathol. 175, 2004–2013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haglund, L., Bernier, S. M., Onnerfjord, P. & Recklies, A. D. Proteomic analysis of the LPS-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage. Matrix Biol. 27, 107–118 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Verzijl, N. et al. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J. 350 (Pt 2), 381–387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Y. J., Sheu, M. L., Tsai, K. S., Yang, R. S. & Liu, S. H. Advanced glycation end products induce peroxisome proliferator-activated receptor γ down-regulation-related inflammatory signals in human chondrocytes via Toll-like receptor-4 and receptor for advanced glycation end products. PLoS ONE 8, e66611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hardy, M. M. et al. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 46, 1789–1803 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Miller, C. et al. Transcriptional induction of cyclooxygenase-2 gene by okadaic acid inhibition of phosphatase activity in human chondrocytes: co-stimulation of AP-1 and CRE nuclear binding proteins. J. Cell Biochem. 69, 392–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, P., Zhu, F. & Konstantopoulos, K. Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-Δ12,14-PGJ2 . PLoS ONE 6, e27630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Álvarez-Soria, M. A. et al. Long-term NSAID treatment directly decreases COX-2 and mPGES-1 production in the articular cartilage of patients with osteoarthritis. Osteoarthritis Cartilage 16, 1484–1493 (2008).

    Article  PubMed  Google Scholar 

  60. Abramson, S. B., Attur, M., Amin, A. R. & Clancy, R. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr. Rheumatol. Rep. 3, 535–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Pelletier, J. P., Mineau, F., Ranger, P., Tardif, G. & Martel-Pelletier, J. The increased synthesis of inducible nitric oxide inhibits IL-1RA synthesis by human articular chondrocytes: possible role in osteoarthritic cartilage degradation. Osteoarthritis Cartilage 4, 77–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Stadler, J. et al. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J. Immunol. 147, 3915–3920 (1991).

    CAS  PubMed  Google Scholar 

  63. Wu, G.-J. et al. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J. Cell Biochem. 101, 1520–1531 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Gómez, R. et al. Nitric oxide boosts TLR-4 mediated lipocalin 2 expression in chondrocytes. J. Orthop. Res. 31, 1046–1052 (2013).

    Article  PubMed  CAS  Google Scholar 

  65. Conde, J. et al. Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes. Ann. Rheum. Dis. 70, 551–559 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Ayral, X., Pickering, E. H., Woodworth, T. G., McKillop, N. & Dougados, M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Ospelt, C. et al. Overexpression of Toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 58, 3684–3692 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Jung, Y. O. et al. Synergism of Toll-like receptor 2 (TLR2), TLR4, and TLR6 ligation on the production of tumor necrosis factor (TNF)-α in a spontaneous arthritis animal model of interleukin (IL)-1 receptor antagonist-deficient mice. Immunol. Lett. 123, 138–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Sanchez, C. et al. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum. 64, 1193–1203 (2011).

    Article  PubMed  CAS  Google Scholar 

  70. Chiba, K. et al. Osteoporotic changes of subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study. Osteoporos. Int. 23, 589–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, L.-Z. et al. Mechanical and biologic link between cartilage and subchondral bone in osteoarthritis. Arthritis Care Res. 64, 960–967 (2012).

    Article  CAS  Google Scholar 

  72. Zhen, G. & Cao, X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol. Sci. 35, 227–236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lacourt, M. et al. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis. Osteoarthritis Cartilage 20, 572–583 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Zou, W., Amcheslavsky, A. & Bar-Shavit, Z. CpG oligodeoxynucleotides modulate the osteoclastogenic activity of osteoblasts via Toll-like receptor 9. J. Biol. Chem. 278, 16732–16740 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Nemoto, E., Honda, T., Kanaya, S., Takada, H. & Shimauchi, H. Expression of functional Toll-like receptors and nucleotide-binding oligomerization domain proteins in murine cementoblasts and their upregulation during cell differentiation. J. Periodont. Res. 43, 585–593 (2008).

    Article  CAS  Google Scholar 

  76. Gao, A., Kantarci, A., Herrera, B. S., Gao, H. & Van Dyke T. E. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts. PeerJ 1, e51 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Inada, M., Matsumoto, C., Uematsu, S., Akira, S. & Miyaura, C. Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J. Immunol. 177, 1879–1885 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Nakao, J. et al. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4–MyD88 dissociation. Bone 58, 17–25 (2013).

    Article  PubMed  CAS  Google Scholar 

  79. Bandow, K. et al. Molecular mechanisms of the inhibitory effect of lipopolysaccharide (LPS) on osteoblast differentiation. Biochem. Biophys. Res. Commun. 402, 755–761 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Huang, R.-L. et al. LPS-stimulated inflammatory environment inhibits BMP-2-induced osteoblastic differentiation through crosstalk between TLR4/MyD88/NF-κB and BMP/Smad signaling. Stem Cells Dev. 23, 277–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Raicevic, G. et al. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin. Tissue Eng. Part A 18, 1410–1418 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, Y. S. et al. Increased circulating heat shock protein 60 induced by menopause, stimulates apoptosis of osteoblast-lineage cells via up-regulation of Toll-like receptors. Bone 45, 68–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Liu, J. et al. Molecular mechanism of the bifunctional role of lipopolysaccharide in osteoclastogenesis. J. Biol. Chem. 284, 12512–12523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Itoh, K. et al. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J. Immunol. 170, 3688–3695 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Clockaerts, S. et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthritis Cartilage 18, 876–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Eymard, F. et al. Infrapatellar fat pad induces an inflammatory and a pro-degradative phenotype in autologous fibroblast-like synoviocytes from patients with knee OA. Arthritis Rheumatol. 66, 2165–2174 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Klein-Wieringa, I. R. et al. The infrapatellar fat pad of patients with osteoarthritis has an inflammatory phenotype. Ann. Rheum. Dis. 70, 851–857 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Distel, E. et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum. 60, 3374–3377 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Bès-Houtmann, S. et al. Presence of functional TLR2 and TLR4 on human adipocytes. Histochem. Cell Biol. 127, 131–137 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Orr, J. S. et al. Toll-like receptor 4 deficiency promotes the alternative activation of adipose tissue macrophages. Diabetes 61, 2718–2727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Davis, J. E., Gabler, N. K., Walker-Daniels, J. & Spurlock, M. E. TLR-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) 16, 1248–1255 (2008).

    Article  CAS  Google Scholar 

  92. Jia, L. et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 3878 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Campo, G. M. et al. Small hyaluronan oligosaccharides induce inflammation by engaging both Toll-like-4 and CD44 receptors in human chondrocytes. Biochem. Pharmacol. 80, 480–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Campo, G. M. et al. Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. Biofactors 38, 69–76 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Wähämaa, H. et al. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res. Ther. 13, R136 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sofat, N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int. J. Exp. Pathol. 90, 463–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Homandberg, G. A., Meyers, R. & Xie, D. L. Fibronectin fragments cause chondrolysis of bovine articular cartilage slices in culture. J. Biol. Chem. 267, 3597–3604 (1992).

    CAS  PubMed  Google Scholar 

  98. Xie, D. L., Meyers, R. & Homandberg, G. A. Fibronectin fragments in osteoarthritic synovial fluid. J. Rheumatol. 19, 1448–1452 (1992).

    CAS  PubMed  Google Scholar 

  99. Brown, R. A. & Jones, K. L. The synthesis and accumulation of fibronectin by human articular cartilage. J. Rheumatol. 17, 65–72 (1990).

    CAS  PubMed  Google Scholar 

  100. Zhen, E. Y. et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum. 58, 2420–2431 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Sofat, N. Robertson, S. D. & Wait, R. Fibronectin III 13–14 domains induce joint damage via Toll-like receptor 4 activation and synergize with interleukin-1 and tumour necrosis factor. J. Innate Immun. 4, 69–79 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zreiqat, H. et al. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res. Ther. 12, R16 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kalichman, L. & Kobyliansky, E. Hand osteoarthritis in Chuvashian population: prevalence and determinants. Rheumatol. Int. 30, 85–92 (2009).

    Article  PubMed  Google Scholar 

  104. Villalvilla, A., Gómez, R., Largo, R. & Herrero-Beaumont, G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int. J. Mol. Sci. 14, 20793–20808 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cillero-Pastor, B., Eijkel, G., Kiss, A., Blanco, F. J. & Heeren, R. M. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage. Anal. Chem. 84, 8909–8916 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Alvarez-Garcia, O., Rogers, N. H., Smith, R. G. & Lotz, M. K. Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1. Arthritis Rheumatol. 66, 1779–1788 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moisio, K. et al. Denuded subchondral bone and knee pain in persons with knee osteoarthritis. Arthritis Rheum. 60, 3703–3710 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ballegaard, C. et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthritis Cartilage 22, 933–940 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Hill, C. L. et al. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann. Rheum. Dis. 66, 1599–1603 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Liu, T., Gao, Y.-J. & Ji, R.-R. Emerging role of Toll-like receptors in the control of pain and itch. Neurosci. Bull. 28, 131–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tanga, F. Y., Nutile-McMenemy, N. & DeLeo, J. A. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc. Natl Acad. Sci. USA 102, 5856–5861 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Campo, G. M. et al. Adenosine A2A receptor activation and hyaluronan fragment inhibition reduce inflammation in mouse articular chondrocytes stimulated with interleukin-1β. FEBS J. 279, 2120–2133 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Chang, E.-J. et al. Hyaluronan inhibits osteoclast differentiation via Toll-like receptor 4. J. Cell Sci. 120, 166–176 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Vasheghani, F. et al. Adult cartilage-specific peroxisome proliferator-activated receptor γ knockout mice exhibit the spontaneous osteoarthritis phenotype. Am. J. Pathol. 182, 1099–1106 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Juarranz, Y. et al. VIP decreases TLR4 expression induced by LPS and TNF-α treatment in human synovial fibroblasts. Ann. NY Acad. Sci. 1070, 359–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Haskó, G., Linden, J., Cronstein, B. & Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat. Rev. Drug Discov. 7, 759–770 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Campo, G. M. et al. The stimulation of adenosine 2A receptor reduces inflammatory response in mouse articular chondrocytes treated with hyaluronan oligosaccharides. Matrix Biology 31, 338–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Peri, F. & Piazza, M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol. Adv. 30, 251–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Iacono, A. et al. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis Rheum. 62, 1675–1682 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, Y. J. et al. EGb761 inhibits inflammatory responses in human chondrocytes and shows chondroprotection in osteoarthritic rat knee. J. Orthop. Res. 31, 1032–1038 (2013).

    Article  PubMed  CAS  Google Scholar 

  121. Villalvilla, A. et al. 6-Shogaol inhibits chondrocytes' innate immune responses and cathepsin-K activity. Mol. Nutr. Food Res. 58, 256–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Ahn, S.-I., Lee, J.-K. & Youn, H.-S. Inhibition of homodimerization of Toll-like receptor 4 by 6-shogaol. Mol. Cells 27, 211–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, Q. et al. Oral and topical boswellic acid attenuates mouse osteoarthritis. Osteoarthritis Cartilage 22, 128–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Barochia, A., Solomon, S., Cui, X., Natanson, C. & Eichacker, P. Q. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin. Drug Metab. Toxicol. 7, 479–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shirey, K. A. et al. The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature 497, 498–502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Neal, M. D. et al. Discovery and validation of a new class of small molecule Toll-like receptor 4 (TLR4) inhibitors. PLoS ONE 8, e65779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shang, L. et al. Selective antibody intervention of Toll-like receptor 4 activation through Fc γ receptor tethering. J. Biol. Chem. 289, 15309–15318 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Piao, W., Vogel, S. N. & Toshchakov, V. Y. Inhibition of TLR4 signaling by TRAM-derived decoy peptides in vitro and in vivo. J. Immunol. 190, 2263–2272 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Hutchinson, M. R. et al. Evidence that tricyclic small molecules may possess Toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience 168, 551–563 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Hutchinson, M. R. et al. Evidence that opioids may have Toll-like receptor 4 and MD-2 effects. Brain Behav. Immun. 24, 83–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Piazza, M. et al. Hemin and a metabolic derivative coprohemin modulate the TLR4 pathway differently through different molecular targets. Innate Immun. 17, 293–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Noman, A. S. M. et al. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-α production via down-regulation of MyD88 expression. Innate Immun. 15, 33–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Bellido, M. et al. Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage 19, 1228–1236 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. WHO. Chronic diseases and health promotion. Chronic rheumatic conditions [online], (2014).

  136. Wan, Y. PPARγ in bone homeostasis. Trends Endocrinol. Metab. 21, 722–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Gosset, P. et al. Prostaglandin D2 affects the differentiation and functions of human dendritic cells: impact on the T cell response. Eur. J. Immunol. 35, 1491–1500 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Arima, M. & Fukuda, T. Prostaglandin D2 receptors DP and CRTH2 in the pathogenesis of asthma. Curr. Mol. Med. 8, 365–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Schindler, C. W. et al. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br. J. Pharmacol. 144, 642–650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by research grants from Fondo de Investigación Sanitaria (PI12/00144 and PI13/00570). R.G. was funded by the Instituto de Salud Carlos III through a Sara Borrell programme. A.V. is the recipient of a fellowship from the Fundación Conchita Rábago. R.L. and O.G. were funded by the Instituto de Salud Carlos III through a research staff stabilization programme.

Author information

Authors and Affiliations

Authors

Contributions

R.G. researched data for the article and wrote the manuscript. R.G., A.V., R.L., O.G. and G.H.-B. substantially contributed to discussion of content and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Rodolfo Gómez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, R., Villalvilla, A., Largo, R. et al. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol 11, 159–170 (2015). https://doi.org/10.1038/nrrheum.2014.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing