Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tendon injury: from biology to tendon repair

Key Points

  • Tendon is a mechanosensitive tissue

  • Abnormal loading leads to tendon injuries

  • Mechanical forces are converted to biochemical signals that elicit cellular responses by tendon cells

  • Similar mechanical and biological signals are involved in tendon development, homeostasis and repair

  • A better understanding of the interaction between forces, intracellular pathways and gene transcription in the context of tendon biology is needed

  • Understanding mechanobiology in tendon development, homeostasis and repair is critical to designing therapies for tendon injury

Abstract

Tendon is a crucial component of the musculoskeletal system. Tendons connect muscle to bone and transmit forces to produce motion. Chronic and acute tendon injuries are very common and result in considerable pain and disability. The management of tendon injuries remains a challenge for clinicians. Effective treatments for tendon injuries are lacking because the understanding of tendon biology lags behind that of the other components of the musculoskeletal system. Animal and cellular models have been developed to study tendon-cell differentiation and tendon repair following injury. These studies have highlighted specific growth factors and transcription factors involved in tenogenesis during developmental and repair processes. Mechanical factors also seem to be essential for tendon development, homeostasis and repair. Mechanical signals are transduced via molecular signalling pathways that trigger adaptive responses in the tendon. Understanding the links between the mechanical and biological parameters involved in tendon development, homeostasis and repair is prerequisite for the identification of effective treatments for chronic and acute tendon injuries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tendon architecture.
Figure 2: Tendon mechanobiology.

Similar content being viewed by others

References

  1. Docheva, D., Muller, S. A., Majewski, M. & Evans, C. H. Biologics for tendon repair. Adv. Drug Deliv. Rev. http://dx.doi.org/10.1016/j.addr.2014.11.015 (2014).

  2. Voleti, P. B., Buckley, M. R. & Soslowsky, L. J. Tendon healing: repair and regeneration. Annu. Rev. Biomed. Eng. 14, 47–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Kaux, J. F., Forthomme, B., Goff, C. L., Crielaard, J. M. & Croisier, J. L. Current opinions on tendinopathy. J. Sports Sci. Med. 10, 238–253 (2011).

    PubMed Central  PubMed  Google Scholar 

  4. Maffulli, N., Khan, K. M. & Puddu, G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14, 840–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Magnusson, S. P., Langberg, H. & Kjaer, M. The pathogenesis of tendinopathy: balancing the response to loading. Nat. Rev. Rheumatol. 6, 262–268 (2010).

    Article  PubMed  Google Scholar 

  6. Magnan, B., Bondi, M., Pierantoni, S. & Samaila, E. The pathogenesis of Achilles tendinopathy: a systematic review. Foot Ankle Surg. 20, 154–159 (2014).

    Article  PubMed  Google Scholar 

  7. Rees, J. D., Stride, M. & Scott, A. Tendons—time to revisit inflammation. Br. J. Sports Med. 48, 1553–1557 (2014).

    Article  PubMed  Google Scholar 

  8. Kannus, P. & Jozsa, L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Joint Surg. Am. 73, 1507–1525 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. American Academy of Orthpoedic Surgeons. Rotator cuff tears, OrthoInfo [online], (2011).

  10. Thornton, G. M. & Hart, D. A. The interface of mechanical loading and biological variables as they pertain to the development of tendinosis. J. Musculoskelet. Neuronal Interact. 11, 94–105 (2011).

    CAS  PubMed  Google Scholar 

  11. Sharma, P. & Maffulli, N. Tendon injury and tendinopathy: healing and repair. J. Bone Joint Surg. Am. 87, 187–202 (2005).

    PubMed  Google Scholar 

  12. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Mienaltowski, M. J. & Birk, D. E. Structure, physiology, and biochemistry of collagens. Adv. Exp. Med. Biol. 802, 5–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Bi, Y. et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 13, 1219–1227 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, J. & Wang, J. H. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet. Disord. 11, 10 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mienaltowski, M. J., Adams, S. M. & Birk, D. E. Regional differences in stem cell/progenitor cell populations from the mouse achilles tendon. Tissue Eng. Part A 19, 199–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Zelzer, E., Blitz, E., Killian, M. L. & Thomopoulos, S. Tendon-to-bone attachment: from development to maturity. Birth Defects Res. C Embryo Today 102, 101–112 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lejard, V. et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J. Biol. Chem. 286, 5855–5867 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Lorda-Diez, C. I., Montero, J. A., Martinez-Cue, C., Garcia-Porrero, J. A. & Hurle, J. M. Transforming growth factors β coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J. Biol. Chem. 284, 29988–29996 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pryce, B. A. et al. Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development 136, 1351–1361 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Heinemeier, K. M. & Kjaer, M. In vivo investigation of tendon responses to mechanical loading. J. Musculoskelet. Neuronal Interact. 11, 115–123 (2011).

    CAS  PubMed  Google Scholar 

  22. Yun, Y. R. et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 218142 (2010).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Murchison, N. D. et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134, 2697–2708 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, W. et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol. Cell Biol. 30, 4797–4807 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ito, Y. et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc. Natl Acad. Sci. USA 107, 10538–10542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lejard, V. et al. Scleraxis and NFATc regulate the expression of the pro-α1(I) collagen gene in tendon fibroblasts. J. Biol. Chem. 282, 17665–17675 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Guerquin, M. J. et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J. Clin. Invest. 123, 3564–3576 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang, J. H., Guo, Q. & Li, B. Tendon biomechanics and mechanobiology—a minireview of basic concepts and recent advancements. J. Hand Ther. 25, 133–140 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Shwartz, Y., Blitz, E. & Zelzer, E. One load to rule them all: mechanical control of the musculoskeletal system in development and aging. Differentiation 86, 104–111 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Tozer, S. & Duprez, D. Tendon and ligament: development, repair and disease. Birth Defects Res. C Embryo Today 75, 226–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Leadbetter, W. B. Cell-matrix response in tendon injury. Clin. Sports Med. 11, 533–578 (1992).

    CAS  PubMed  Google Scholar 

  32. Xu, Y. & Murrell, G. A. The basic science of tendinopathy. Clin. Orthop. Relat. Res. 466, 1528–1538 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Jelinsky, S. A. et al. Regulation of gene expression in human tendinopathy. BMC Musculoskelet. Disord. 12, 86 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nourissat, G., Houard, X., Sellam, J., Duprez, D. & Berenbaum, F. Use of autologous growth factors in aging tendon and chronic tendinopathy. Front. Biosci. (Elite Ed.) E5, 911–921 (2013).

    Article  CAS  Google Scholar 

  35. Ribbans, W. J. & Collins, M. Pathology of the tendo Achillis: do our genes contribute? Bone Joint J. 95-B, 305–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Freedman, B. R., Gordon, J. A. & Soslowsky, L. J. The Achilles tendon: fundamental properties and mechanisms governing healing. Muscles Ligaments Tendons J. 4, 245–255 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  37. Davis, M. E., Gumucio, J. P., Sugg, K. B., Bedi, A. & Mendias, C. L. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix. J. Appl. Physiol. (1985). 115, 884–891 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  38. Zhang, J. & Wang, J. H. The effects of mechanical loading on tendons—an in vivo and in vitro model study. PLoS ONE 8, e71740 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Rees, J. D., Wilson, A. M. & Wolman, R. L. Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45, 508–521 (2006).

    Article  CAS  Google Scholar 

  40. Childress, M. A. & Beutler, A. Management of chronic tendon injuries. Am. Fam. Physician 87, 486–490 (2013).

    PubMed  Google Scholar 

  41. Khan, K. M. & Scott, A. Mechanotherapy: how physical therapists' prescription of exercise promotes tissue repair. Br. J. Sports Med. 43, 247–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Jeong, D. U. et al. Clinical applications of platelet-rich plasma in patellar tendinopathy. Biomed. Res. Int. 2014, 249498 (2014).

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang, J. H. Can PRP effectively treat injured tendons? Muscles Ligaments Tendons J. 4, 35–37 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Guevara-Alvarez, A., Schmitt, A., Russell, R. P., Imhoff, A. B. & Buchmann, S. Growth factor delivery vehicles for tendon injuries: mesenchymal stem cells and platelet rich plasma. Muscles Ligaments Tendons J. 4, 378–385 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hast, M. W., Zuskov, A. & Soslowsky, L. J. The role of animal models in tendon research. Bone Joint Res. 3, 193–202 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lui, P. P., Maffulli, N., Rolf, C. & Smith, R. K. What are the validated animal models for tendinopathy? Scand. J. Med. Sci. Sports 21, 3–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Dirks, R. C. & Warden, S. J. Models for the study of tendinopathy. J. Musculoskelet. Neuronal Interact. 11, 141–149 (2011).

    CAS  PubMed  Google Scholar 

  48. Heinemeier, K. M. et al. Uphill running improves rat Achilles tendon tissue mechanical properties and alters gene expression without inducing pathological changes. J. Appl. Physiol. (1985). 113, 827–836 (2012).

    Article  CAS  Google Scholar 

  49. Halper, J. Advances in the use of growth factors for treatment of disorders of soft tissues. Adv. Exp. Med. Biol. 802, 59–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Dyment, N. A. et al. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing. PLoS One 8, e59944 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jelinsky, S. A. et al. Treatment with rhBMP12 or rhBMP13 increase the rate and the quality of rat Achilles tendon repair. J. Orthop. Res. 29, 1604–1612 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Manning, C. N. et al. The early inflammatory response after flexor tendon healing: a gene expression and histological analysis. J. Orthop. Res. 32, 645–652 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Chazaud, B. Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219, 172–178 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Scott, A., Sampaio, A., Abraham, T., Duronio, C. & Underhill, T. M. Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J. Orthop. Res. 29, 289–296 (2011).

    Article  PubMed  Google Scholar 

  55. Juneja, S. C., Schwarz, E. M., O'Keefe, R. J. & Awad, H. A. Cellular and molecular factors in flexor tendon repair and adhesions: a histological and gene expression analysis. Connect. Tissue Res. 54, 218–226 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chhabra, A. et al. GDF-5 deficiency in mice delays Achilles tendon healing. J. Orthop. Res. 21, 826–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Katzel, E. B. et al. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J. Orthop. Res. 29, 684–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Docheva, D., Hunziker, E. B., Fassler, R. & Brandau, O. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol. Cell Biol. 25, 699–705 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Shukunami, C., Takimoto, A., Oro, M. & Hiraki, Y. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev. Biol. 298, 234–247 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat. Med. 5, 495–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).

    CAS  PubMed  Google Scholar 

  62. Hee, C. K., Dines, J. S., Solchaga, L. A., Shah, V. R. & Hollinger, J. O. Regenerative tendon and ligament healing: opportunities with recombinant human platelet-derived growth factor BB-homodimer. Tissue Eng. Part B Rev. 18, 225–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Kaux, J. F. Vascular endothelial growth factor-111 (VEGF-111) and tendon healing: preliminary results in a rat model of tendon injury. Muscles Ligaments Tendons J. 4, 24–28 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  64. Shah, P., Keppler, L. & Rutkowski, J. A review of platelet derived growth factor playing pivotal role in bone regeneration. J. Oral Implantol. 40, 330–340 (2014).

    Article  PubMed  Google Scholar 

  65. Lupu, F., Terwilliger, J. D., Lee, K., Segre, G. V. & Efstratiadis, A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev. Biol. 229, 141–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hansen, M. et al. Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand. J. Med. Sci. Sports 23, 614–619 (2013).

    CAS  PubMed  Google Scholar 

  67. Nielsen, R. H. et al. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure. Matrix Biol. 34, 96–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Herchenhan, A., Bayer, M. L., Eliasson, P., Magnusson, S. P. & Kjaer, M. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue. Growth Horm. IGF Res. 25, 13–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Hagerty, P. et al. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials 33, 6355–6361 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Dahlgren, L. A., van der Meulen, M. C., Bertram, J. E., Starrak, G. S. & Nixon, A. J. Insulin-like growth factor-I improves cellular and molecular aspects of healing in a collagenase-induced model of flexor tendinitis. J. Orthop. Res. 20, 910–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Cucchiarini, M. & Madry, H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther. 21, 811–819 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Schweitzer, R., Zelzer, E. & Volk, T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 137, 2807–2817 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Havis, E. et al. Transcriptomic analysis of mouse limb tendon cells during development. Development 141, 3683–3696 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Brown, J. P., Finley, V. G. & Kuo, C. K. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J. Biomech. 47, 214–222 (2014).

    Article  PubMed  Google Scholar 

  75. Goncalves, A. I. et al. Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS ONE 8, e83734 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Barsby, T. & Guest, D. Transforming growth factor β3 promotes tendon differentiation of equine embryo-derived stem cells. Tissue Eng. Part A 19, 2156–2165 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Kapacee, Z. et al. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3. Matrix Biol. 29, 668–677 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Farhat, Y. M. et al. Gene expression analysis of the pleiotropic effects of TGF-β1 in an in vitro model of flexor tendon healing. PLoS ONE 7, e51411 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Barsby, T., Bavin, E. P. & Guest, D. J. Three-dimensional culture and transforming growth factor β3 synergistically promote tenogenic differentiation of equine embryo-derived stem cells. Tissue Eng. Part A 20, 2604–2613 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bayer, M. L. et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS ONE 9, e86078 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Majewski, M. et al. Improvement of tendon repair using muscle grafts transduced with TGF-β1 cDNA. Eur. Cell. Mater. 23, 94–101 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Mendias, C. L., Bakhurin, K. I. & Faulkner, J. A. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl Acad. Sci. USA 105, 388–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Berthet, E. et al. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J. Orthop. Res. 31, 1475–1483 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Lee, J. Y. et al. BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS ONE 6, e17531 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Park, A. et al. Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng. Part A 16, 2941–2951 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Hoffmann, A. et al. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J. Clin. Invest. 116, 940–952 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. James, R., Kumbar, S. G., Laurencin, C. T., Balian,G. & Chhabra, A. B. Tendon tissue engineering: adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed. Mater. 6, 025011 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Majewski, M. et al. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther. 15, 1139–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Pelled, G. et al. Smad8/BMP2-engineered mesenchymal stem cells induce accelerated recovery of the biomechanical properties of the Achilles tendon. J. Orthop. Res. 30, 1932–1939 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Mazerbourg, S. et al. Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J. Biol. Chem. 280, 32122–32132 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Storm, E. E. et al. Limb alterations in brachypodism mice due to mutations in a new member of the TGF β-superfamily. Nature 368, 639–643 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Settle, S. H. Jr. et al. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev. Biol. 254, 116–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, K. J., Mendelsohn, M. & Jessell, T. M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev. 12, 3394–3407 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Settle, S. et al. The BMP family member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev. Biol. 234, 138–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Mikic, B., Schalet, B. J., Clark, R. T., Gaschen, V. & Hunziker, E. B. GDF-5 deficiency in mice alters the ultrastructure, mechanical properties and composition of the Achilles tendon. J. Orthop. Res. 19, 365–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Mikic, B., Bierwert, L. & Tsou, D. Achilles tendon characterization in GDF-7 deficient mice. J. Orthop. Res. 24, 831–841 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Clark, R. T. et al. GDF-5 deficiency in mice leads to disruption of tail tendon form and function. Connect. Tissue Res. 42, 175–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Blitz, E. et al. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev. Cell 17, 861–873 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  100. Blitz, E., Sharir, A., Akiyama, H. & Zelzer, E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 140, 2680–2690 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Hogan, M. et al. Growth differentiation factor-5 regulation of extracellular matrix gene expression in murine tendon fibroblasts. J. Tissue Eng. Regen. Med. 5, 191–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Edom-Vovard, F., Schuler, B., Bonnin, M. A., Teillet, M. A. & Duprez, D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev. Biol. 247, 351–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Brent, A. E., Schweitzer, R. & Tabin, C. J. A somitic compartment of tendon progenitors. Cell 113, 235–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Brent, A. E. & Tabin, C. J. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 131, 3885–3896 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Eloy-Trinquet, S., Wang, H., Edom-Vovard, F. & Duprez, D. Fgf signaling components are associated with muscles and tendons during limb development. Dev. Dyn. 238, 1195–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Paxton, J. Z., Hagerty, P., Andrick, J. J. & Baar, K. Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments. Tissue Eng. Part A 18, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Thomopoulos, S. et al. The effects of exogenous basic fibroblast growth factor on intrasynovial flexor tendon healing in a canine model. J. Bone Joint Surg. Am. 92, 2285–2293 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  108. Tang, J. B. et al. Adeno-associated virus-2-mediated bFGF gene transfer to digital flexor tendons significantly increases healing strength. an in vivo study. J. Bone Joint Surg. Am. 90, 1078–1089 (2008).

    Article  PubMed  Google Scholar 

  109. Tang, J. B., Chen, C. H., Zhou, Y. L., McKeever, C. & Liu, P. Y. Regulatory effects of introduction of an exogenous FGF2 gene on other growth factor genes in a healing tendon. Wound Repair Regen. 22, 111–118 (2014).

    Article  PubMed  Google Scholar 

  110. Baksh, N., Hannon, C. P., Murawski, C. D., Smyth, N. A. & Kennedy, J. G. Platelet-rich plasma in tendon models: a systematic review of basic science literature. Arthroscopy 29, 596–607 (2013).

    Article  PubMed  Google Scholar 

  111. Kaux, J. F. Comparative study of five techniques of preparation of platelet-rich plasma [French]. Pathol. Biol. (Paris) 59, 157–160 (2011).

    Article  Google Scholar 

  112. Alberton, P. et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev. 21, 846–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Chen, X. et al. Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Eng. Part A 20, 1583–1592 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Tan, C., Lui, P. P., Lee, Y. W. & Wong, Y. M. Scx-transduced tendon-derived stem cells (TDSCs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS ONE 9, e97453 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Liu, H. et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells 33, 443–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Otabe, K. et al. Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. J. Orthop. Res. 33, 1–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development 125, 4019–4032 (1998).

    CAS  PubMed  Google Scholar 

  118. Schweitzer, R. et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128, 3855–3866 (2001).

    CAS  PubMed  Google Scholar 

  119. Bonnin, M. A. et al. Six1 is not involved in limb tendon development, but is expressed in limb connective tissue under Shh regulation. Mech. Dev. 122, 573–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Maeda, T. et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr. Biol. 21, 933–941 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Heinemeier, K. M. et al. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J. Appl. Physiol. (1985) 106, 178–186 (2009).

    Article  CAS  Google Scholar 

  122. de Boer, M. D. et al. The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J. Physiol. 585, 241–251 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Mendias, C. L., Gumucio, J. P., Bakhurin, K. I., Lynch, E. B. & Brooks, S. V. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J. Orthop. Res. 30, 606–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, J. L. et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31, 9438–9451 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Scott, A. et al. Mechanical force modulates scleraxis expression in bioartificial tendons. J. Musculoskelet. Neuronal Interact. 11, 124–132 (2011).

    CAS  PubMed  Google Scholar 

  126. Morita, Y., Watanabe, S., Ju, Y. & Xu, B. Determination of optimal cyclic uniaxial stretches for stem cell-to-tenocyte differentiation under a wide range of mechanical stretch conditions by evaluating gene expression and protein synthesis levels. Acta Bioeng. Biomech. 15, 71–79 (2013).

    PubMed  Google Scholar 

  127. Killian, M. L., Cavinatto, L., Galatz, L. M. & Thomopoulos, S. The role of mechanobiology in tendon healing. J. Shoulder Elbow Surg. 21, 228–237 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  128. Eliasson, P., Andersson, T. & Aspenberg, P. Achilles tendon healing in rats is improved by intermittent mechanical loading during the inflammatory phase. J. Orthop. Res. 30, 274–279 (2012).

    Article  PubMed  Google Scholar 

  129. Eliasson, P., Andersson, T. & Aspenberg, P. Rat Achilles tendon healing: mechanical loading and gene expression. J. Appl. Physiol. (1985) 107, 399–407 (2009).

    Article  Google Scholar 

  130. Andersson, T., Eliasson, P., Hammerman, M., Sandberg, O. & Aspenberg, P. Low-level mechanical stimulation is sufficient to improve tendon healing in rats. J. Appl. Physiol. (1985) 113, 1398–1402 (2012).

    Article  Google Scholar 

  131. Gimbel, J. A., Van Kleunen, J. P., Williams, G. R., Thomopoulos, S. & Soslowsky, L. J. Long durations of immobilization in the rat result in enhanced mechanical properties of the healing supraspinatus tendon insertion site. J. Biomech. Eng. 129, 400–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Pagel, J. I. & Deindl, E. Early growth response 1--a transcription factor in the crossfire of signal transduction cascades. Indian J. Biochem. Biophys. 48, 226–235 (2011).

    CAS  PubMed  Google Scholar 

  133. Eliasson, P., Andersson, T., Hammerman, M. & Aspenberg, P. Primary gene response to mechanical loading in healing rat Achilles tendons. J. Appl. Physiol. (1985) 114, 1519–1526 (2013).

    Article  CAS  Google Scholar 

  134. Hammerman, M., Aspenberg, P. & Eliasson, P. Microtrauma stimulates rat Achilles tendon healing via an early gene expression pattern similar to mechanical loading. J. Appl. Physiol. (1985) 116, 54–60 (2014).

    Article  Google Scholar 

  135. Matsakas, A., Otto, A., Elashry, M. I., Brown, S. C. & Patel, K. Altered primary and secondary myogenesis in the myostatin-null mouse. Rejuvenation Res. 13, 717–727 (2010).

    Article  PubMed  Google Scholar 

  136. Hankemeier, S. et al. Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng. 11, 41–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, X. T., Liu, P. Y., Xin, K. Q. & Tang, J. B. Tendon healing in vitro: bFGF gene transfer to tenocytes by adeno-associated viral vectors promotes expression of collagen genes. J. Hand Surg. Am. 30, 1255–1261 (2005).

    Article  PubMed  Google Scholar 

  138. Thomopoulos, S. et al. bFGF and PDGF-BB for tendon repair: controlled release and biologic activity by tendon fibroblasts in vitro. Ann. Biomed. Eng. 38, 225–234 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  139. Sahoo, S., Toh, S. L. & Goh, J. C. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31, 2990–2998 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Raghavan, S. S. et al. Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulation. Plast. Reconstr. Surg. 129, 479–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Caliari, S. R. & Harley, B. A. Composite growth factor supplementation strategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng. Part A 19, 1100–1112 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Gournet for assistance with illustrations. The authors' work is supported by funding from the National Institute of Health and Medical Research (INSERM). D.D. also receives support from the Fondation pour la Recherche Médicale (FRM), Agence national de la recherche (ANR), Association Française contre les Myopathies, Centre national de la recherche scientifique (CNRS) and Pierre & Marie Curie University (UPMC), Fondation Arthritis Courtin and Société Française de Rhumatologie.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, providing a substantial contribution to discussions of the content, writing the article, and to the review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Francis Berenbaum.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourissat, G., Berenbaum, F. & Duprez, D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol 11, 223–233 (2015). https://doi.org/10.1038/nrrheum.2015.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing