Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of primary Sjögren syndrome

Key Points

  • Treatment decisions in primary Sjögren syndrome (pSS) are based on the initial evaluation of symptoms and extraglandular manifestations

  • Sicca is managed by education and environment modification, elimination of contingent offending drugs, artificial tears, secretagogues and treatments for complications

  • Severe and acute systemic manifestations require treatment with glucocorticoids and/or immunosuppressant drugs

  • The role for biologic therapies is controversial as no double-blind randomized controlled trials (RCTs) establishing their efficacy are available

  • Targets for new treatments directed against the immunopathological mechanisms of pSS have been identified

  • Patients who fail to respond to conventional treatment should be invited to participate in ongoing RCTs of novel therapies

Abstract

Primary Sjögren syndrome (pSS) is a progressive autoimmune disease characterized by sicca and systemic manifestations. In this Review, we summarize the available data on topical and systemic medications, according to clinical signs and disease activity, and we describe the ongoing studies using biologic drugs in the treatment of pSS. Expanding knowledge about the epidemiology, classification criteria, systemic activity scoring (ESSDAI) and patient-reported outcomes (ESSPRI) is driving active research. Treatment decisions are based on the evaluation of symptoms and extraglandular manifestations. Symptomatic treatment is usually appropriate, whereas systemic treatment is reserved for systemic manifestations. Sicca is managed by education, environment modification, elimination of contingent offending drugs, artificial tears, secretagogues and treatments for complications. Mild systemic signs such as fatigue are treated by exercise. Pain can require short-term moderate-dose glucocorticoid therapy and, in some cases, disease-modifying drugs. Severe and acute systemic manifestations indicate treatment with glucocorticoids and/or immunosuppressant drugs. The role for biologic agents is promising, but no double-blind randomized controlled trials (RCTs) proving the efficacy of these drugs are available. Targets for new treatments directed against the immunopathological mechanisms of pSS include epithelial cells, T cells, B-cell overactivity, the interferon signature, proinflammatory cytokines, ectopic germinal centre formation, chemokines involved in lymphoid cell homing, and epigenetic modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fox, R. I. Sjögren's syndrome. Lancet 366, 321–331 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Cornec, D. et al. The differential diagnosis of dry eyes, dry mouth, and parotidomegaly: a comprehensive review. Clin. Rev. Allergy Immunol. 49, 278–287 (2015).

    Article  PubMed  Google Scholar 

  3. Pijpe, J. et al. Progression of salivary gland dysfunction in patients with Sjögren's syndrome. Ann. Rheum. Dis. 66, 107–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Vitali, C. et al. Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 61, 554–558 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shiboski, S. C. et al. American College of Rheumatology classification criteria for Sjögren's syndrome: a data-driven, expert consensus approach in the Sjögren's International Collaborative Clinical Alliance cohort. Arthritis Care Res. (Hoboken) 64, 475–487 (2012).

    Article  CAS  Google Scholar 

  6. Shiboski, C. H. & Shiboski, S. C. Proposed ACR–EULAR classification criteria for Sjögren's syndrome: development and validation [abstract S1.1]. Scand. J. Immunol. 81, 330 (2015).

    Google Scholar 

  7. Seror, R. et al. EULAR Sjögren's syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjögren's syndrome. Ann. Rheum. Dis. 69, 1103–1109 (2010).

    Article  PubMed  Google Scholar 

  8. Seror, R. et al. Defining disease activity states and clinically meaningful improvement in primary Sjogren's syndrome with EULAR primary Sjögren's syndrome disease activity (ESSDAI) and patient-reported indexes (ESSPRI). Ann. Rheum. Dis. 75, 382–389 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Seror, R. et al. EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI): development of a consensus patient index for primary Sjögren's syndrome. Ann. Rheum. Dis. 70, 968–972 (2011).

    Article  PubMed  Google Scholar 

  10. Theander, E. et al. Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjögren's syndrome. Ann. Rheum. Dis. 70, 1363–1368 (2011).

    Article  PubMed  Google Scholar 

  11. Voulgarelis, M. et al. Prognosis and outcome of non-Hodgkin lymphoma in primary Sjögren syndrome. Med. (Baltimore) 91, 1–9 (2012).

    Article  Google Scholar 

  12. Baimpa, E., Dahabreh, I. J., Voulgarelis, M. & Moutsopoulos, H. M. Hematologic manifestations and predictors of lymphoma development in primary Sjögren syndrome: clinical and pathophysiologic aspects. Med. (Baltimore) 88, 284–293 (2009).

    Article  Google Scholar 

  13. Tobon, G. J. et al. Role of Fms-like tyrosine kinase 3 ligand as a potential biologic marker of lymphoma in primary Sjögren's syndrome. Arthritis Rheum. 65, 3218–3227 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Papageorgiou, A. et al. A BAFF receptor His159Tyr mutation in Sjögren's syndrome-related lymphoproliferation. Arthritis Rheumatol. 67, 2732–2741 (2015).

    Article  PubMed  Google Scholar 

  15. Valim, V. et al. Recommendations for the treatment of Sjögren's syndrome. Rev. Bras. Reumatol. 55, 446–457 (in Portuguese) (2015).

    Article  PubMed  Google Scholar 

  16. Furness, S., Worthington, H. V., Bryan, G., Birchenough, S. & McMillan, R. Interventions for the management of dry mouth: topical therapies. Cochrane Database Syst. Rev. 12, CD008934 (2011).

    Google Scholar 

  17. Akpek, E. K. et al. Treatment of Sjögren's syndrome-associated dry eye an evidence-based review. Ophthalmology 118, 1242–1252 (2011).

    PubMed  Google Scholar 

  18. Ramos-Casals, M., Tzioufas, A. G., Stone, J. H., Siso, A. & Bosch, X. Treatment of primary Sjögren syndrome: a systematic review. JAMA 304, 452–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Foulks, G. N. et al. Clinical guidelines for management of dry eye associated with Sjögren disease. Ocul. Surf. 13, 118–132 (2015).

    Article  PubMed  Google Scholar 

  20. Amerongen, A. V. & Veerman, E. C. Saliva — the defender of the oral cavity. Oral Dis. 8, 12–22 (2002).

    Article  PubMed  Google Scholar 

  21. Dawes, C. et al. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 60, 863–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Mavragani, C. P. & Moutsopoulos, H. M. Conventional therapy of Sjögren's syndrome. Clin. Rev. Allergy Immunol. 32, 284–291 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Najera, M. P. et al. Prevalence of periodontal disease in patients with Sjögren's syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 83, 453–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Boutsi, E. A., Paikos, S., Dafni, U. G., Moutsopoulos, H. M. & Skopouli, F. N. Dental and periodontal status of Sjögren's syndrome. J. Clin. Periodontol. 27, 231–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Lugonja, B. et al. Periodontitis prevalence and serum antibody reactivity to periodontal bacteria in primary Sjögren's syndrome: a pilot study. J. Clin. Periodontol. 43, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Le Gall, M. et al. A prospective evaluation of dental and periodontal status in patients with suspected Sjögren's syndrome. Joint Bone Spine 83, 235–236 (2016).

    Article  PubMed  Google Scholar 

  27. van der Reijden, W. A., van der Kwaak, H., Vissink, A., Veerman, E. C. & Amerongen, A. V. Treatment of xerostomia with polymer-based saliva substitutes in patients with Sjögren's syndrome. Arthritis Rheum. 39, 57–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Bartold, P. M. Dentinal hypersensitivity: a review. Aust. Dent. J. 51, 212–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Plemons, J. M., Al-Hashimi, I. & Marek, C. L. and American Dental Association Council on Scientific Affairs. Managing xerostomia and salivary gland hypofunction: executive summary of a report from the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 145, 867–873 (2014).

    Article  PubMed  Google Scholar 

  30. Steller, M., Chou, L. & Daniels, T. E. Electrical stimulation of salivary flow in patients with Sjögren's syndrome. J. Dent. Res. 67, 1334–1337 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Talal, N., Quinn, J. H. & Daniels, T. E. The clinical effects of electrostimulation on salivary function of Sjögren's syndrome patients. A placebo controlled study. Rheumatol. Int. 12, 43–45 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Strietzel, F. P. et al. Efficacy and safety of an intraoral electrostimulation device for xerostomia relief: a multicenter, randomized trial. Arthritis Rheum. 63, 180–190 (2011).

    Article  PubMed  Google Scholar 

  33. Vivino, F. B. et al. Pilocarpine tablets for the treatment of dry mouth and dry eye symptoms in patients with Sjögren syndrome: a randomized, placebo-controlled, fixed-dose, multicenter trial. P92-01 Study Group. Arch. Intern. Med. 159, 174–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Papas, A. S. et al. Successful treatment of dry mouth and dry eye symptoms in Sjögren's syndrome patients with oral pilocarpine: a randomized, placebo-controlled, dose-adjustment study. J. Clin. Rheumatol. 10, 169–177 (2004).

    Article  PubMed  Google Scholar 

  35. Wu, C. H. et al. Pilocarpine hydrochloride for the treatment of xerostomia in patients with Sjögren's syndrome in Taiwan — a double-blind, placebo-controlled trial. J. Formos. Med. Assoc. 105, 796–803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petrone, D. et al. A double-blind, randomized, placebo-controlled study of cevimeline in Sjögren's syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum. 46, 748–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Fife, R. S. et al. Cevimeline for the treatment of xerostomia in patients with Sjögren syndrome: a randomized trial. Arch. Intern. Med. 162, 1293–1300 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Leung, K. C. et al. The efficacy of cevimeline hydrochloride in the treatment of xerostomia in Sjögren's syndrome in southern Chinese patients: a randomised double-blind, placebo-controlled crossover study. Clin. Rheumatol. 27, 429–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Meijer, J. M. et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 960–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Dass, S. et al. Reduction of fatigue in Sjögren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Devauchelle-Pensec, V. et al. Treatment of primary Sjögren syndrome with rituximab: a randomized trial. Ann. Intern. Med. 160, 233–242 (2014).

    Article  PubMed  Google Scholar 

  42. Forstot, S. L. & Foulks, G. N. Management of Dry Eye (Oxford Univ. Press, 2012).

    Google Scholar 

  43. Aragona, P. et al. Effects of amino acids enriched tears substitutes on the cornea of patients with dysfunctional tear syndrome. Acta Ophthalmol. 91, e437–e444 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Condon, P. I. et al. Double blind, randomised, placebo controlled, crossover, multicentre study to determine the efficacy of a 0.1% (w/v) sodium hyaluronate solution (Fermavisc) in the treatment of dry eye syndrome. Br. J. Ophtalmol. 83, 1121–1124 (1999).

    Article  CAS  Google Scholar 

  45. Toda, I., Shinozaki, N. & Tsubota, K. Hydroxypropyl methylcellulose for the treatment of severe dry eye associated with Sjögren's syndrome. Cornea 15, 120–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Marsh, P. & Pflugfelder, S. C. Topical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjögren syndrome. Ophthalmology 106, 811–816 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Barber, L. D., Pflugfelder, S. C., Tauber, J. & Foulks, G. N. Phase III safety evaluation of cyclosporine 0.1% ophthalmic emulsion administered twice daily to dry eye disease patients for up to 3 years. Ophthalmology 112, 1790–1794 (2005).

    Article  PubMed  Google Scholar 

  48. Sall, K., Stevenson, O. D., Mundorf, T. K. & Reis, B. L. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. Ophthalmology 107, 631–639 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Stevenson, D., Tauber, J. & Reis, B. L. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. Ophthalmology 107, 967–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Tsifetaki, N. et al. Oral pilocarpine for the treatment of ocular symptoms in patients with Sjögren's syndrome: a randomised 12 week controlled study. Ann. Rheum. Dis. 62, 1204–1207 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Milin, M. et al. Sicca symptoms are associated with similar fatigue, anxiety, depression, and quality-of-life impairments in patients with and without primary Sjögren's syndrome. Joint Bone Spine http://dx.doi.org/10.1016/j.jbspin.2015.10.005 (2016).

  52. van Leeuwen, N. et al. Psychological profiles in patients with Sjögren's syndrome related to fatigue: a cluster analysis. Rheumatology (Oxford) 54, 776–783 (2015).

    Article  CAS  Google Scholar 

  53. Segal, B. et al. Prevalence, severity, and predictors of fatigue in subjects with primary Sjögren's syndrome. Arthritis Rheum. 59, 1780–1787 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gottenberg, J. E. et al. Effects of hydroxychloroquine on symptomatic improvement in primary Sjögren syndrome: the JOQUER randomized clinical trial. JAMA 312, 249–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Hartkamp, A. et al. Effect of dehydroepiandrosterone administration on fatigue, well-being, and functioning in women with primary Sjögren syndrome: a randomised controlled trial. Ann. Rheum. Dis. 67, 91–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Theander, E., Horrobin, D. F., Jacobsson, L. T. & Manthorpe, R. Gammalinolenic acid treatment of fatigue associated with primary Sjögren's syndrome. Scand. J. Rheumatol. 31, 72–79 (2002).

    Article  PubMed  Google Scholar 

  57. Virkki, L. M. et al. Dehydroepiandrosterone (DHEA) substitution treatment for severe fatigue in DHEA-deficient patients with primary Sjögren's syndrome. Arthritis Care Res. (Hoboken) 62, 118–124 (2010).

    Article  CAS  Google Scholar 

  58. Kruize, A. A. et al. Hydroxychloroquine treatment for primary Sjögren's syndrome: a two year double blind crossover trial. Ann. Rheum. Dis. 52, 360–364 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mariette, X. et al. Inefficacy of infliximab in primary Sjögren's syndrome: results of the randomized, controlled Trial of Remicade in Primary Sjögren's Syndrome (TRIPSS). Arthritis Rheum. 50, 1270–1276 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Sankar, V. et al. Etanercept in Sjögren's syndrome: a twelve-week randomized, double-blind, placebo-controlled pilot clinical trial. Arthritis Rheum. 50, 2240–2245 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Mariette, X. et al. Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase II study. Ann. Rheum. Dis. 74, 526–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Meiners, P. M. et al. Abatacept treatment reduces disease activity in early primary Sjögren's syndrome (open-label proof of concept ASAP study). Ann. Rheum. Dis. 73, 1393–1396 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Brown, S. et al. The TRACTISS Protocol: a randomised double blind placebo controlled clinical TRial of Anti-B-Cell Therapy In patients with primary Sjögren's Syndrome. BMC Musculoskelet. Disord. 15, 21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bowman, S. et al. Preliminary results of a double-blind randomised trial of rituximab anti-B-cell therapy in patients with primary Sjögrens syndrome [abstract 11L]. Arthritis Rheum. 67 (Suppl. 10) (2015).

  65. Rice, D. H. Chronic inflammatory disorders of the salivary glands. Otolaryngol. Clin. North Am. 32, 813–818 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Koch, M., Iro, H. & Zenk, J. Stenosis and other non-sialolithiasis-related obstructions of the major salivary gland ducts. Modern treatment concepts. HNO 58, 218–224 (in German) (2010).

    Article  CAS  PubMed  Google Scholar 

  67. De Luca, R., Trodella, M., Vicidomini, A., Colella, G. & Tartaro, G. Endoscopic management of salivary gland obstructive diseases in patients with Sjögren's syndrome. J. Craniomaxillofac. Surg. 43, 1643–1649 (2015).

    Article  PubMed  Google Scholar 

  68. Jager, D. J., Karagozoglu, K. H., Maarse, F., Brand, H. S. & Forouzanfar, T. Sialendoscopy of salivary glands affected by Sjögren syndrome: a randomized controlled pilot study. J. Oral Maxillofac. Surg. 74, 1167–1174 (2016).

    Article  PubMed  Google Scholar 

  69. Madero-Visbal, R. & Milas, Z. The role of parotidectomy in Sjögren's syndrome. Oral Maxillofac. Surg. Clin. North Am. 26, 83–90 (2014).

    Article  PubMed  Google Scholar 

  70. De Vita, S. et al. Efficacy and safety of belimumab given for 12 months in primary Sjögren's syndrome: the BELISS open-label phase II study. Rheumatology (Oxford) (2015).

  71. Vitali, C. & Del Papa, N. Pain in primary Sjögren's syndrome. Best Pract. Res. Clin. Rheumatol. 29, 63–70 (2015).

    Article  PubMed  Google Scholar 

  72. Fauchais, A. L. et al. Articular manifestations in primary Sjögren's syndrome: clinical significance and prognosis of 188 patients. Rheumatology (Oxford) 49, 1164–1172 (2010).

    Article  Google Scholar 

  73. Fox, R. I. et al. Treatment of primary Sjögren's syndrome with hydroxychloroquine. Am. J. Med. 85, 62–67 (1988).

    Article  CAS  PubMed  Google Scholar 

  74. Fox, R. I., Dixon, R., Guarrasi, V. & Krubel, S. Treatment of primary Sjögren's syndrome with hydroxychloroquine: a retrospective, open-label study. Lupus 5, S31–S36 (1996).

    Article  PubMed  Google Scholar 

  75. Sanders, S. & Harisdangkul, V. Leflunomide for the treatment of rheumatoid arthritis and autoimmunity. Am. J. Med. Sci. 323, 190–193 (2002).

    Article  PubMed  Google Scholar 

  76. Brito-Zeron, P. et al. Annular erythema in primary Sjögren's syndrome: description of 43 non-Asian cases. Lupus 23, 166–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Jessop, S., Whitelaw, D. A. & Delamere, F. M. Drugs for discoid lupus erythematosus. Cochrane Database Syst. Rev. 4, CD002954 (2009).

    Google Scholar 

  78. Kuhn, A., Ruland, V. & Bonsmann, G. Cutaneous lupus erythematosus: update of therapeutic options part I. J. Am. Acad. Dermatol. 65, e179–e193 (2011).

    Article  PubMed  Google Scholar 

  79. Ruzicka, T., Sommerburg, C., Goerz, G., Kind, P. & Mensing, H. Treatment of cutaneous lupus erythematosus with acitretin and hydroxychloroquine. Br. J. Dermatol. 127, 513–518 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Kuhn, A. et al. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus: analysis of 1002 patients from the EUSCLE database. Br. J. Dermatol. 171, 571–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Ramos-Casals, M. et al. Primary Sjögren syndrome in Spain: clinical and immunologic expression in 1010 patients. Med. (Baltimore) 87, 210–219 (2008).

    Article  CAS  Google Scholar 

  82. Palm, O. et al. Clinical pulmonary involvement in primary Sjögren's syndrome: prevalence, quality of life and mortality — a retrospective study based on registry data. Rheumatology (Oxford) 52, 173–179 (2013).

    Article  Google Scholar 

  83. Gutsche, M., Rosen, G. D. & Swigris, J. J. Connective tissue disease-associated interstitial lung disease: a review. Curr. Respir. Care Rep. 1, 224–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Justet, A., Ottaviani, S., Dieude, P. & Taille, C. Tocilizumab for refractory organising pneumonia associated with Sjögren's disease.BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2014-209076 (2015).

  85. King, T. E. Jr. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Goules, A. V., Tatouli, I. P., Moutsopoulos, H. M. & Tzioufas, A. G. Clinically significant renal involvement in primary Sjögren's syndrome: clinical presentation and outcome. Arthritis Rheum. 65, 2945–2953 (2013).

    Article  PubMed  Google Scholar 

  88. Francois, H. & Mariette, X. Renal involvement in primary Sjögren syndrome. Nat. Rev. Nephrol. 12, 82–93 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Maripuri, S. et al. Renal involvement in primary Sjögren's syndrome: a clinicopathologic study. Clin. J. Am. Soc. Nephrol. 4, 1423–1431 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Evans, R. D., Laing, C. M., Ciurtin, C. & Walsh, S. B. Tubulointerstitial nephritis in primary Sjögren syndrome: clinical manifestations and response to treatment. BMC Musculoskelet. Disord. 17, 2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Arends, S. et al. Long-term follow-up of a randomised controlled trial of azathioprine/methylprednisolone versus cyclophosphamide in patients with proliferative lupus nephritis. Ann. Rheum. Dis. 71, 966–973 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Felson, D. T. & Anderson, J. Evidence for the superiority of immunosuppressive drugs and prednisone over prednisone alone in lupus nephritis. Results of a pooled analysis. N. Engl. J. Med. 311, 1528–1533 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Sfikakis, P. P. et al. Remission of proliferative lupus nephritis following B cell depletion therapy is preceded by down-regulation of the T cell costimulatory molecule CD40 ligand: an open-label trial. Arthritis Rheum. 52, 501–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Gunnarsson, I. et al. Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheum. 56, 1263–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Gottenberg, J. E. et al. Efficacy of rituximab in systemic manifestations of primary Sjögren's syndrome: results in 78 patients of the AutoImmune and Rituximab registry. Ann. Rheum. Dis. 72, 1026–1031 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Atzeni, F. et al. Chronic widespread pain in the spectrum of rheumatological diseases. Best Pract. Res. Clin. Rheumatol. 25, 165–171 (2011).

    Article  PubMed  Google Scholar 

  98. Ruperto, N. et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: a randomised trial. Lancet 387, 671–678 (2016).

    Article  PubMed  Google Scholar 

  99. Bunch, T. W., Worthington, J. W., Combs, J. J., Ilstrup, D. M. & Engel, A. G. Azathioprine with prednisone for polymyositis. A controlled, clinical trial. Ann. Intern. Med. 92, 365–369 (1980).

    Article  CAS  PubMed  Google Scholar 

  100. Majithia, V. & Harisdangkul, V. Mycophenolate mofetil (CellCept): an alternative therapy for autoimmune inflammatory myopathy. Rheumatology (Oxford) 44, 386–389 (2005).

    Article  CAS  Google Scholar 

  101. Colafrancesco, S. et al. Myositis in primary Sjögren's syndrome: data from a multicentre cohort. Clin. Exp. Rheumatol. 33, 457–464 (2015).

    PubMed  Google Scholar 

  102. Oddis, C. V. et al. Rituximab in the treatment of refractory adult and juvenile dermatomyositis and adult polymyositis: a randomized, placebo-phase trial. Arthritis Rheum. 65, 314–324 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mok, C. C., Ho, L. Y. & To, C. H. Rituximab for refractory polymyositis: an open-label prospective study. J. Rheumatol. 34, 1864–1868 (2007).

    CAS  PubMed  Google Scholar 

  104. Carvajal Alegria, G. et al. Epidemiology of neurological manifestations in Sjögren's syndrome: data from the French ASSESS Cohort. RMD Open 2, e000179 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tobon, G. J., Pers, J. O., Devauchelle-Pensec, V. & Youinou, P. Neurological disorders in primary Sjögren's syndrome. Autoimmune Dis. 2012, 645967 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Nobile-Orazio, E. et al. Intravenous immunoglobulin versus intravenous methylprednisolone for chronic inflammatory demyelinating polyradiculoneuropathy: a randomised controlled trial. Lancet Neurol. 11, 493–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. van Schaik, I. N. et al. Pulsed high-dose dexamethasone versus standard prednisolone treatment for chronic inflammatory demyelinating polyradiculoneuropathy (PREDICT study): a double-blind, randomised, controlled trial. Lancet Neurol. 9, 245–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Yamashita, H. et al. Diagnosis and treatment of primary Sjögren syndrome-associated peripheral neuropathy: a six-case series. Mod. Rheumatol. 23, 925–933 (2013).

    Article  PubMed  Google Scholar 

  109. Rist, S. et al. Experience of intravenous immunoglobulin therapy in neuropathy associated with primary Sjögren's syndrome: a national multicentric retrospective study. Arthritis Care Res. (Hoboken) 63, 1339–1344 (2011).

    Article  Google Scholar 

  110. Martinez, A. R., Nunes, M. B., Nucci, A. & Franca, M. C. Jr Sensory neuronopathy and autoimmune diseases. Autoimmune Dis. 2012, 873587 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Chen, W. H., Yeh, J. H. & Chiu, H. C. Plasmapheresis in the treatment of ataxic sensory neuropathy associated with Sjögren's syndrome. Eur. Neurol. 45, 270–274 (2001).

    Article  PubMed  Google Scholar 

  112. Mekinian, A. et al. Efficacy of rituximab in primary Sjögren's syndrome with peripheral nervous system involvement: results from the AIR registry. Ann. Rheum. Dis. 71, 84–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Misery, L., Pavy-Le Traon, A., Genestet, S., Le Bec, R. & Marcorelles, P. Diagnosis of small-fibre neuropathies: comparison between quantitative sensory testing and the measurement of intraepidermal nerve fibre density. J. Eur. Acad. Dermatol. Venereol. 28, 825–826 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Devigili, G. et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 131, 1912–1925 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fauchais, A. L. et al. Small fibre neuropathy in primary Sjögren syndrome. Rev. Med. Interne 32, 142–148 (in French) (2011).

    Article  PubMed  Google Scholar 

  116. Flanagan, E. P. et al. Short myelitis lesions in aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders. JAMA Neurol. 72, 81–87 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Radaelli, M. et al. Neuromyelitis optica spectrum disorders: long-term safety and efficacy of rituximab in Caucasian patients. Mult. Scler. 22, 511–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Mealy, M. A., Wingerchuk, D. M., Palace, J., Greenberg, B. M. & Levy, M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 71, 324–330 (2014).

    Article  PubMed  Google Scholar 

  119. Trebst, C. et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J. Neurol. 261, 1–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Cacoub, P., Comarmond, C., Domont, F., Savey, L. & Saadoun, D. Cryoglobulinemia vasculitis. Am. J. Med. 128, 950–955 (2015).

    Article  PubMed  Google Scholar 

  121. Terrier, B. et al. Non HCV-related infectious cryoglobulinemia vasculitis: results from the French nationwide CryoVas survey and systematic review of the literature. J. Autoimmun. 65, 74–81 (2015).

    Article  PubMed  Google Scholar 

  122. Visentini, M. et al. Efficacy of low-dose rituximab for the treatment of mixed cryoglobulinemia vasculitis: phase II clinical trial and systematic review. Autoimmun. Rev. 14, 889–896 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. De Vita, S. et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum. 64, 843–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Singh, A. G., Singh, S. & Matteson, E. L. Rate, risk factors and causes of mortality in patients with Sjögren's syndrome: a systematic review and meta-analysis of cohort studies. Rheumatology (Oxford) 55, 450–460 (2016).

    Article  CAS  Google Scholar 

  125. Johnsen, S. J. et al. Risk of non-Hodgkin's lymphoma in primary Sjögren's syndrome: a population-based study. Arthritis Care Res. (Hoboken) 65, 816–821 (2013).

    Article  Google Scholar 

  126. Nocturne, G. & Mariette, X. Sjögren Syndrome-associated lymphomas: an update on pathogenesis and management. Br. J. Haematol. 168, 317–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Pollard, R. P. et al. Treatment of mucosa-associated lymphoid tissue lymphoma in Sjögren's syndrome: a retrospective clinical study. J. Rheumatol. 38, 2198–2208 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Papageorgiou, A. et al. Predicting the outcome of Sjögren's syndrome-associated non-hodgkin's lymphoma patients. PLoS ONE 10, e0116189 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rummel, M. J. et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet 381, 1203–1210 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Voulgarelis, M., Giannouli, S., Tzioufas, A. G. & Moutsopoulos, H. M. Long term remission of Sjögren's syndrome associated aggressive B cell non-Hodgkin's lymphomas following combined B cell depletion therapy and CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). Ann. Rheum. Dis. 65, 1033–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Zandbelt, M. M. et al. Etanercept in the treatment of patients with primary Sjögren's syndrome: a pilot study. J. Rheumatol. 31, 96–101 (2004).

    CAS  PubMed  Google Scholar 

  132. Devauchelle-Pensec, V. et al. Improvement of Sjögren's syndrome after two infusions of rituximab (anti-CD20). Arthritis Rheum. 57, 310–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Carubbi, F. et al. Efficacy and safety of rituximab treatment in early primary Sjögren's syndrome: a prospective, multi-center, follow-up study. Arthritis Res. Ther. 15, R172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cornec, D. et al. Do high numbers of salivary gland-infiltrating B cells predict better or worse outcomes after rituximab in patients with primary Sjögren's syndrome? Ann. Rheum. Dis. 75, e33 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Christodoulou, M. I., Kapsogeorgou, E. K. & Moutsopoulos, H. M. Characteristics of the minor salivary gland infiltrates in Sjögren's syndrome. J. Autoimmun. 34, 400–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Thabet, Y. et al. Epigenetic dysregulation in salivary glands from patients with primary Sjögren's syndrome may be ascribed to infiltrating B cells. J. Autoimmun. 41, 175–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Kong, L. et al. Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren's syndrome. Arthritis Rheum. 40, 87–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Varin, M. M. et al. In Sjögren's syndrome, B lymphocytes induce epithelial cells of salivary glands into apoptosis through protein kinase C delta activation. Autoimmun. Rev. 11, 252–258 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Spachidou, M. P. et al. Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjögren's syndrome. Clin. Exp. Immunol. 147, 497–503 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zheng, L., Zhang, Z., Yu, C. & Yang, C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjögren's syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 109, 844–850 (2010).

    Article  PubMed  Google Scholar 

  141. Kapsogeorgou, E. K., Moutsopoulos, H. M. & Manoussakis, M. N. Functional expression of a costimulatory B7.2 (CD86) protein on human salivary gland epithelial cells that interacts with the CD28 receptor, but has reduced binding to CTLA4. J. Immunol. 166, 3107–3113 (2001).

    Article  CAS  PubMed  Google Scholar 

  142. Fox, R. I., Bumol, T., Fantozzi, R., Bone, R. & Schreiber, R. Expression of histocompatibility antigen HLA-DR by salivary gland epithelial cells in Sjögren's syndrome. Arthritis Rheum. 29, 1105–1111 (1986).

    Article  CAS  PubMed  Google Scholar 

  143. Kapsogeorgou, E. K., Dimitriou, I. D., Abu-Helu, R. F., Moutsopoulos, H. M. & Manoussakis, M. N. Activation of epithelial and myoepithelial cells in the salivary glands of patients with Sjögren's syndrome: high expression of intercellular adhesion molecule-1 (ICAM.1) in biopsy specimens and cultured cells. Clin. Exp. Immunol. 124, 126–133 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yannopoulos, D. I. et al. Conjunctival epithelial cells from patients with Sjögren's syndrome inappropriately express major histocompatibility complex molecules, La(SSB) antigen, and heat-shock proteins. J. Clin. Immunol. 12, 259–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Hamm-Alvarez, S. F. et al. Tear cathepsin S as a candidate biomarker for Sjögren's syndrome. Arthritis Rheumatol. 66, 1872–1881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xanthou, G. et al. 'Lymphoid' chemokine messenger RNA expression by epithelial cells in the chronic inflammatory lesion of the salivary glands of Sjögren's syndrome patients: possible participation in lymphoid structure formation. Arthritis Rheum. 44, 408–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Brkic, Z. & Versnel, M. A. Type I IFN signature in primary Sjögren's syndrome patients. Expert Rev. Clin. Immunol. 10, 457–467 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Guiducci, C. et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J. Exp. Med. 205, 315–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ittah, M. et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjögren's syndrome. Arthritis Res. Ther. 8, R51 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mariette, X. et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's syndrome. Ann. Rheum. Dis. 62, 168–171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pers, J. O. et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann. NY Acad. Sci. 1050, 34–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Gottenberg, J. E. et al. Serum levels of beta2-microglobulin and free light chains of immunoglobulins are associated with systemic disease activity in primary Sjögren's syndrome. Data at enrollment in the prospective ASSESS cohort. PLoS ONE 8, e59868 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Quartuccio, L. et al. BLyS upregulation in Sjögren's syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands. Rheumatol. (Oxford) 52, 276–281 (2013).

    Article  CAS  Google Scholar 

  155. Drayton, D. L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N. H. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 197, 1153–1163 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goodnow, C. C., Vinuesa, C. G., Randall, K. L., Mackay, F. & Brink, R. Control systems and decision making for antibody production. Nat. Immunol. 11, 681–688 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Vinuesa, C. G. & Cyster, J. G. How T cells earn the follicular rite of passage. Immunity 35, 671–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Ito, T. et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28, 870–880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nguyen, C. Q., Hu, M. H., Li, Y., Stewart, C. & Peck, A. B. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren's syndrome: findings in humans and mice. Arthritis Rheum. 58, 734–743 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sakai, A., Sugawara, Y., Kuroishi, T., Sasano, T. & Sugawara, S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren's syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J. Immunol. 181, 2898–2906 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Katsifis, G. E., Rekka, S., Moutsopoulos, N. M., Pillemer, S. & Wahl, S. M. Systemic and local interleukin-17 and linked cytokines associated with Sjögren's syndrome immunopathogenesis. Am. J. Pathol. 175, 1167–1177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fleige, H. et al. IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. J. Exp. Med. 211, 643–651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lemoine, S., Morva, A., Youinou, P. & Jamin, C. Regulatory B cells in autoimmune diseases: how do they work? Ann. NY Acad. Sci. 1173, 260–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Lemoine, S., Morva, A., Youinou, P. & Jamin, C. Human T cells induce their own regulation through activation of B cells. J. Autoimmun. 36, 228–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  165. Nouel, A. et al. B-cells induce regulatory T cells through TGF-β/IDO production in A CTLA-4 dependent manner. J. Autoimmun 59, 53–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity 32, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Devauchelle-Pensec, V. et al. Which and how many patients should be included in randomised controlled trials to demonstrate the efficacy of biologics in primary Sjögren's syndrome? PLoS ONE 10, e0133907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jousse-Joulin, S. et al. Brief report: ultrasonographic assessment of salivary gland response to rituximab in primary Sjögren's syndrome. Arthritis Rheumatol. 67, 1623–1628 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Cornec, D. et al. Development of the Sögren's Syndrome Responder Index, a data-driven composite endpoint for assessing treatment efficacy. Rheumatology (Oxford) 54, 1699–1708 (2015).

    Article  CAS  Google Scholar 

  171. Oni, C. et al. Eligibility for clinical trials in primary Sjögren's syndrome: lessons from the UK Primary Sjögren's Syndrome Registry. Rheumatology (Oxford) (2015).

  172. Ono, M. et al. Therapeutic effect of cevimeline on dry eye in patients with Sjögren's syndrome: a randomized, double-blind clinical study. Am. J. Ophthalmol. 138, 6–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Price, E. J., Rigby, S. P., Clancy, U. & Venables, P. J. A double blind placebo controlled trial of azathioprine in the treatment of primary Sjögren's syndrome. J. Rheumatol. 25, 896–899 (1998).

    CAS  PubMed  Google Scholar 

  174. Drosos, A. A., Skopouli, F. N., Costopoulos, J. S., Papadimitriou, C. S. & Moutsopoulos, H. M. Cyclosporin A (CyA) in primary Sjögren's syndrome: a double blind study. Ann. Rheum. Dis. 45, 732–735 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Norheim, K. B., Harboe, E., Goransson, L. G. & Omdal, R. Interleukin-1 inhibition and fatigue in primary Sjögren's syndrome — a double blind, randomised clinical trial. PLoS ONE 7, e30123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Brest Diagnosis Primary Sjögren Cohort Study Group: D. Cornec, S. Jousse-Joulin, T. Marhadour, D. Guellec, S. Boisramé-Gastrin, B. Cochener, M. Roguedas-Contios, M. Chastaing, V. Griner-Abraham, F. Couturaud, J. B. Noury, S. Genestet, C. Hanrotel, Y. Renaudineau, P. Marcorelles, S. Costa and Y. Gauvin.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to discussions of content, writing the article, and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Alain Saraux.

Ethics declarations

Competing interests

J.-O.P. declares that he has received honoraria from Novartis. A.S. declares that he has received funds or honoraria from Abbvie, Bristol Myers Squibb, Chugai, GlaxoSmithKline, MSD, Novartis, Pfizer, Roche and UCB.. V.D.-P. declares that she has received funds or honoraria from Abbvie, Bristol Myers Squibb, Chugai, MSD, Novartis, Roche and UCB.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Main immunopathological mechanisms involved in primary Sjögren syndrome (pSS) and potential therapeutic targets (PDF 1515 kb)

Glossary

Focus score

A histopathological score based on the number of mononuclear cell infiltrates containing at least 50 inflammatory cells in a 4mm2 glandular section of the minor salivary gland.

Ocular staining score

(OSS). A score that, similarly to the van Bistjerveld score, is based on a test using a dye (rose bengal or lissamine green) to evaluate damage to conjunctival and corneal epithelial cells. Slight differences exist in the interpretation of these scores: a van Bistjerveld score of 4 is equivalent to an OSS of 5.

Schirmer's test

An objective evaluation of eye dryness using calibrated strips of filter paper placed within the eyelid.

Salivary flow rate

The patient passively drools every minute for 15 min into a 50 ml tube, without or after stimulation. The collected samples are weighed using an analytical balance and expressed in ml per min.

Chronic suppurative sialadenitis

Sudden onset of pain, swelling, indurated, tender major salivary gland (most commonly the parotid gland) with purulence from duct due to bacterial infection.

Sialolithiasis

Postprandial salivary pain and swelling caused by the formation of stones (salts and proteins, predominantly calcium carbonate) in the ductal system; the submandibular gland is most often affected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraux, A., Pers, JO. & Devauchelle-Pensec, V. Treatment of primary Sjögren syndrome. Nat Rev Rheumatol 12, 456–471 (2016). https://doi.org/10.1038/nrrheum.2016.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing