Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes and consequences of endoplasmic reticulum stress in rheumatic disease

Key Points

  • The endoplasmic reticulum (ER) constantly monitors the amount and conformational status of secreted and membrane-related proteins

  • The ER rapidly activates multiple signalling pathways in response to changes in the quality and quantity of the proteins it processes, levels of reactive oxygen species and metabolic changes

  • The ER is an intracellular nexus of the innate and adaptive immune response pathways

  • Disrupted ER homeostasis has an important role in the pathogenesis of many diseases, including several rheumatic diseases

  • ER stress signalling pathways are important in several immune and somatic cell types implicated in disease pathways: fibroblast-like synoviocytes, myeloid cells, myocytes, endothelial cells, B cells, chondrocytes and epithelial cells

  • Future therapies that target ER signalling pathways have potential applications in many rheumatic diseases

Abstract

Rheumatic diseases represent a heterogeneous group of inflammatory conditions, many of which involve chronic activation of both innate and adaptive immune responses by multiple genetic and environmental factors. These immune responses involve the secretion of excessive amounts of cytokines and other signalling mediators by activated immune cells. The endoplasmic reticulum (ER) is the cellular organelle that directs the folding, processing and trafficking of membrane-bound and secreted proteins, including many key components of the immune response. Maintaining homeostasis in the ER is critical to cell function and survival. Consequently, elaborate mechanisms have evolved to sense and respond to ER stress through three main signalling pathways that together comprise the unfolded protein response (UPR). Activation of the UPR can rapidly resolve the accumulation of misfolded proteins, direct permanent changes in the size and function of cells during differentiation, and critically influence the immune response and inflammation. Recognition of the importance of ER stress and UPR signalling pathways in normal and dysregulated immune responses has greatly increased in the past few years. This Review discusses several settings in which ER stress contributes to the pathogenesis of rheumatic diseases and considers some of the therapeutic opportunities that these discoveries provide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways that orchestrate the unfolded protein response.
Figure 2: IRE1α signalling pathways interact with immune response pathways.
Figure 3: PERK signalling pathways interact with immune response pathways.
Figure 4: Possible roles for endoplasmic reticulum homeostasis in rheumatic diseases.

Similar content being viewed by others

References

  1. Brandizzi, F. & Barlowe, C. Organization of the ER–Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14, 382–392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kohno, K., Normington, K., Sambrook, J., Gething, M. J. & Mori, K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol. Cell. Biol. 13, 877–890 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cox, J. S., Shamu, C. E. & Walter, P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73, 1197–1206 (1993).

    CAS  PubMed  Google Scholar 

  4. Shamu, C. E., Cox, J. S. & Walter, P. The unfolded-protein-response pathway in yeast. Trends Cell Biol. 4, 56–60 (1994).

    CAS  PubMed  Google Scholar 

  5. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    CAS  PubMed  Google Scholar 

  6. Janssens, S., Pulendran, B. & Lambrecht, B. N. Emerging functions of the unfolded protein response in immunity. Nat. Immunol. 15, 910–919 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    CAS  PubMed  Google Scholar 

  8. Araki, K. & Nagata, K. Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 4, a015438 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ron, D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J. Clin. Invest. 109, 443–445 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3, a004374 (2011).

    PubMed  PubMed Central  Google Scholar 

  12. Smith, M. H., Ploegh, H. L. & Weissman, J. S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    CAS  PubMed  Google Scholar 

  13. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–822 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16, 495–501 (2014).

    CAS  PubMed  Google Scholar 

  15. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  17. Gardner, B. M., Pincus, D., Gotthardt, K., Gallagher, C. M. & Walter, P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5, a013169 (2013).

    PubMed  PubMed Central  Google Scholar 

  18. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    CAS  PubMed  Google Scholar 

  19. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    CAS  PubMed  Google Scholar 

  20. Acosta-Alvear, D. et al. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27, 53–66 (2007).

    CAS  PubMed  Google Scholar 

  21. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    CAS  PubMed  Google Scholar 

  23. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  24. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Martino, M. B. et al. The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal Immunol. 6, 639–654 (2013).

    CAS  PubMed  Google Scholar 

  27. Tsuru, A. et al. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl Acad. Sci. USA 110, 2864–2869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Iwawaki, T. et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat. Cell Biol. 3, 158–164 (2001).

    CAS  PubMed  Google Scholar 

  29. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    CAS  PubMed  Google Scholar 

  30. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. & Ron, D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904 (2000).

    CAS  PubMed  Google Scholar 

  31. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fawcett, T. W., Martindale, J. L., Guyton, K. Z., Hai, T. & Holbrook, N. J. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem. J. 339, 135–141 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    CAS  PubMed  Google Scholar 

  34. Ma, Y., Brewer, J. W., Diehl, J. A. & Hendershot, L. M. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318, 1351–1365 (2002).

    CAS  PubMed  Google Scholar 

  35. Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cullinan, S. B. et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23, 7198–7209 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    CAS  PubMed  Google Scholar 

  40. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    CAS  PubMed  Google Scholar 

  41. Yoshida, H., Haze, K., Yanagi, H., Yura, T. & Mori, K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins: involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741–33749 (1998).

    CAS  PubMed  Google Scholar 

  42. Adachi, Y. et al. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33, 75–89 (2008).

    CAS  PubMed  Google Scholar 

  43. Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13, 351–364 (2007).

    CAS  PubMed  Google Scholar 

  44. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    CAS  PubMed  Google Scholar 

  46. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006).

    CAS  PubMed  Google Scholar 

  47. Murakami, T. et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell Biol. 11, 1205–1211 (2009).

    CAS  PubMed  Google Scholar 

  48. Saito, A. et al. Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat. Cell Biol. 11, 1197–1204 (2009).

    CAS  PubMed  Google Scholar 

  49. Hino, K. et al. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J. Biol. Chem. 289, 13810–13820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cameron, T. L. et al. Cartilage-specific ablation of XBP1 signaling in mouse results in a chondrodysplasia characterized by reduced chondrocyte proliferation and delayed cartilage maturation and mineralization. Osteoarthritis Cartilage 23, 661–670 (2015).

    CAS  PubMed  Google Scholar 

  51. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  52. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, A. H., Chu, G. C., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24, 4368–4380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4, 321–329 (2003).

    CAS  PubMed  Google Scholar 

  56. Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Osorio, F. et al. The unfolded-protein-response sensor IRE-1alpha regulates the function of CD8α+ dendritic cells. Nat. Immunol. 15, 248–257 (2014).

    CAS  PubMed  Google Scholar 

  58. Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204, 2267–2275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Brunsing, R. et al. B- and T-cell development both involve activity of the unfolded protein response pathway. J. Biol. Chem. 283, 17954–17961 (2008).

    CAS  PubMed  Google Scholar 

  60. Dickhout, J. G. et al. Induction of the unfolded protein response after monocyte to macrophage differentiation augments cell survival in early atherosclerotic lesions. FASEB J. 25, 576–589 (2011).

    CAS  PubMed  Google Scholar 

  61. Tohmonda, T. et al. IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J. Clin. Invest. 125, 3269–3279 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  63. Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaneko, M., Niinuma, Y. & Nomura, Y. Activation signal of nuclear factor-kB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol. Pharm. Bull. 26, 931–935 (2003).

    CAS  PubMed  Google Scholar 

  65. Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, H. Y. et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol. Cell. Biol. 23, 5651–5663 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cho, J. A. et al. The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe 13, 558–569 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Petrasek, J. et al. STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hattori, T., Ohoka, N., Hayashi, H. & Onozaki, K. C/EBP homologous protein (CHOP) up-regulates IL-6 transcription by trapping negative-regulating NF-IL6 isoform. FEBS Lett. 541, 33–39 (2003).

    CAS  PubMed  Google Scholar 

  70. Marjon, P. L., Bobrovnikova-Marjon, E. V. & Abcouwer, S. F. Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol. Cancer 3, 4 (2004).

    PubMed  PubMed Central  Google Scholar 

  71. Gora, S. et al. Phospholipolyzed LDL induces an inflammatory response in endothelial cells through endoplasmic reticulum stress signaling. FASEB J. 24, 3284–3297 (2010).

    CAS  PubMed  Google Scholar 

  72. Maguire, J. A., Mulugeta, S. & Beers, M. F. Endoplasmic reticulum stress induced by surfactant protein C BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am. J. Respir. Cell Mol. Biol. 44, 404–414 (2011).

    CAS  PubMed  Google Scholar 

  73. Smith, J. A. et al. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-β induction via X-box binding protein 1. Eur. J. Immunol. 38, 1194–1203 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu, F. et al. ER stress and its regulator X-box-binding protein-1 enhance polyIC-induced innate immune response in dendritic cells. Eur. J. Immunol. 41, 1086–1097 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Colbert, R. A., DeLay, M. L., Klenk, E. I. & Layh-Schmitt, G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol. Rev. 233, 181–202 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Clavarino, G. et al. Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic:polycytidylic acid-stimulated dendritic cells. Proc. Natl Acad. Sci. USA 109, 3006–3011 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Goodall, J. C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl Acad. Sci. USA 107, 17698–17703 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shenderov, K. et al. Cutting edge: endoplasmic reticulum stress licenses macrophages to produce mature IL-1β in response to TLR4 stimulation through a caspase-8- and TRIF-dependent pathway. J. Immunol. 192, 2029–2033 (2014).

    CAS  PubMed  Google Scholar 

  80. Menu, P. et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3, e261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lerner, A. G. et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 16, 265–273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  PubMed  Google Scholar 

  84. Anthony, T. G. & Wek, R. C. TXNIP switches tracks toward a terminal UPR. Cell Metab. 16, 135–137 (2012).

    CAS  PubMed  Google Scholar 

  85. Edwan, J. H., Goldbach-Mansky, R. & Colbert, R. A. Identification of interleukin-1β-producing monocytes that are susceptible to pyronecrotic cell death in patients with neonatal-onset multisystem inflammatory disease. Arthritis Rheumatol. 67, 3286–3297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Thacker, J. D. et al. 1-Peptidyl-2-arachidonoyl-3-stearoyl-sn-glyceride: an immunologically active lipopeptide from goat serum (Capra hircus) is an endogenous damage-associated molecular pattern. J. Nat. Prod. 72, 1993–1999 (2009).

    CAS  PubMed  Google Scholar 

  87. Overley-Adamson, B. et al. Targeting the unfolded protein response, XBP1, and the NLRP3 inflammasome in fibrosis and cancer. Cancer Biol. Ther. 15, 452–462 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Broderick, L., De Nardo, D., Franklin, B. S., Hoffman, H. M. & Latz, E. The inflammasomes and autoinflammatory syndromes. Annu. Rev. Pathol. 10, 395–424 (2015).

    CAS  PubMed  Google Scholar 

  89. Bartoszewski, R. et al. The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J. Biol. Chem. 286, 41862–41870 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Layh-Schmitt, G., Yang, E. Y., Kwon, G. & Colbert, R. A. HLA-B27 alters the response to tumor necrosis factor α and promotes osteoclastogenesis in bone marrow monocytes from HLA-B27-transgenic rats. Arthritis Rheum. 65, 2123–2131 (2013).

    CAS  PubMed  Google Scholar 

  91. Suwara, M. I. et al. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 7, 684–693 (2014).

    CAS  PubMed  Google Scholar 

  92. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Woo, C. W., Kutzler, L., Kimball, S. R. & Tabas, I. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat. Cell Biol. 14, 192–200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Perri, E. R., Thomas, C. J., Parakh, S., Spencer, D. M. & Atkin, J. D. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front. Cell Dev. Biol. 3, 80 (2015).

    PubMed  Google Scholar 

  95. Osorio, F., Lambrecht, B. & Janssens, S. The UPR and lung disease. Semin. Immunopathol. 35, 293–306 (2013).

    CAS  PubMed  Google Scholar 

  96. Zhou, A. X. & Tabas, I. The UPR in atherosclerosis. Semin. Immunopathol. 35, 321–332 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Manie, S. N., Lebeau, J. & Chevet, E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am. J. Physiol. Cell Physiol. 307, C901–C907 (2014).

    CAS  PubMed  Google Scholar 

  98. Iwawaki, T. & Oikawa, D. The role of the unfolded protein response in diabetes mellitus. Semin. Immunopathol. 35, 333–350 (2013).

    CAS  PubMed  Google Scholar 

  99. Smith, J. A. A new paradigm: innate immune sensing of viruses via the unfolded protein response. Front. Microbiol. 5, 222 (2014).

    PubMed  PubMed Central  Google Scholar 

  100. Adolph, T. E., Niederreiter, L., Blumberg, R. S. & Kaser, A. Endoplasmic reticulum stress and inflammation. Dig. Dis. 30, 341–346 (2012).

    PubMed  Google Scholar 

  101. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  103. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lugli, E. B. et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res. Ther. 17, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Klareskog, L. & Catrina, A. I. Autoimmunity: lungs and citrullination. Nat. Rev. Rheumatol. 11, 261–262 (2015).

    CAS  PubMed  Google Scholar 

  106. Qu, Z. et al. Local proliferation of fibroblast-like synoviocytes contributes to synovial hyperplasia. Results of proliferating cell nuclear antigen/cyclin, c-myc, and nucleolar organizer region staining. Arthritis Rheum. 37, 212–220 (1994).

    CAS  PubMed  Google Scholar 

  107. Pap, T., Muller-Ladner, U., Gay, R. E. & Gay, S. Fibroblast biology: role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2, 361–367 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Buckley, C. D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).

    CAS  PubMed  Google Scholar 

  109. Park, Y. J., Yoo, S. A. & Kim, W. U. Role of endoplasmic reticulum stress in rheumatoid arthritis pathogenesis. J. Korean Med. Sci. 29, 2–11 (2014).

    CAS  PubMed  Google Scholar 

  110. Gao, B., Calhoun, K. & Fang, D. The proinflammatory cytokines IL-1β and TNF-α induce the expression of Synoviolin, an E3 ubiquitin ligase, in mouse synovial fibroblasts via the Erk1/2–ETS1 pathway. Arthritis Res. Ther. 8, R172 (2006).

    PubMed  PubMed Central  Google Scholar 

  111. Amano, T. et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 17, 2436–2449 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamasaki, S., Yagishita, N., Tsuchimochi, K., Nishioka, K. & Nakajima, T. Rheumatoid arthritis as a hyper-endoplasmic-reticulum-associated degradation disease. Arthritis Res. Ther. 7, 181–186 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Klaasen, R. et al. Synovial synoviolin in relation to response to TNF blockade in patients with rheumatoid arthritis and psoriatic arthritis. Ann. Rheum. Dis. 71, 1260–1261 (2012).

    CAS  PubMed  Google Scholar 

  114. Yoo, S. A. et al. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. J. Exp. Med. 209, 871–886 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Corrigall, V. M. et al. The human endoplasmic reticulum molecular chaperone BiP is an autoantigen for rheumatoid arthritis and prevents the induction of experimental arthritis. J. Immunol. 166, 1492–1498 (2001).

    CAS  PubMed  Google Scholar 

  116. Blass, S. et al. The stress protein BiP is overexpressed and is a major B and T cell target in rheumatoid arthritis. Arthritis Rheum. 44, 761–771 (2001).

    CAS  PubMed  Google Scholar 

  117. Brownlie, R. J. et al. Treatment of murine collagen-induced arthritis by the stress protein BiP via interleukin-4-producing regulatory T cells: a novel function for an ancient protein. Arthritis Rheum. 54, 854–863 (2006).

    CAS  PubMed  Google Scholar 

  118. Shoda, H. et al. Autoantigen BiP-derived HLA-DR4 epitopes differentially recognized by effector and regulatory T cells in rheumatoid arthritis. Arthritis Rheumatol. 67, 1171–1181 (2015).

    CAS  PubMed  Google Scholar 

  119. Taurog, J. D., Chhabra, A. & Colbert, R. A. Axial spondyloarthritis and ankylosing spondylitis. N. Engl. J. Med. 374, 2563–2574 (2016).

    PubMed  Google Scholar 

  120. Wright, C. et al. Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol. Cell. Proteomics 11, M9.00384 (2012).

    PubMed  Google Scholar 

  121. Baraliakos, X., Baerlecken, N., Witte, T., Heldmann, F. & Braun, J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann. Rheum. Dis. 73, 1079–1082 (2014).

    CAS  PubMed  Google Scholar 

  122. Tsui, F. W., Tsui, H. W., Las Heras, F., Pritzker, K. P. & Inman, R. D. Serum levels of novel noggin and sclerostin-immune complexes are elevated in ankylosing spondylitis. Ann. Rheum. Dis. 73, 1873–1879 (2014).

    CAS  PubMed  Google Scholar 

  123. Kim, Y. G. et al. Role of protein phosphatase magnesium-dependent 1A and anti-protein phosphatase magnesium-dependent 1A autoantibodies in ankylosing spondylitis. Arthritis Rheumatol. 66, 2793–2803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Van den Bosch, F. & Deodhar, A. Treatment of spondyloarthritis beyond TNF-alpha blockade. Best Pract. Res. Clin. Rheumatol. 28, 819–827 (2014).

    PubMed  Google Scholar 

  125. Brown, M. A., Kenna, T. & Wordsworth, B. P. Genetics of ankylosing spondylitis — insights into pathogenesis. Nat. Rev. Rheumatol. 12, 81–91 (2016).

    CAS  PubMed  Google Scholar 

  126. Smith, J. A. & Colbert, R. A. Review: the interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 66, 231–241 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. May, E., Satumitra, N., Dorris, M. I. & Taurog, J. D. No evidence for clonal T cell expansion in early stage arthritis of HLA-B27 transgenic rats. Arthritis Rheum. 43, S263 (2000).

    Google Scholar 

  128. Glatigny, S. et al. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. Arthritis Rheum. 64, 110–120 (2012).

    CAS  PubMed  Google Scholar 

  129. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  130. Colbert, R. A., Tran, T. M. & Layh-Schmitt, G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol. 57, 44–51 (2014).

    CAS  PubMed  Google Scholar 

  131. Bowness, P. HLA-B27. Annu. Rev. Immunol. 33, 29–48 (2015).

    CAS  PubMed  Google Scholar 

  132. Bowness, P. et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol. 186, 2672–2680 (2011).

    CAS  PubMed  Google Scholar 

  133. Turner, M. J., Delay, M. L., Bai, S., Klenk, E. & Colbert, R. A. HLA-B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum. 56, 215–223 (2007).

    PubMed  Google Scholar 

  134. Turner, M. J. et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 175, 2438–2448 (2005).

    CAS  PubMed  Google Scholar 

  135. Mear, J. P. et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J. Immunol. 163, 6665–6670 (1999).

    CAS  PubMed  Google Scholar 

  136. Feng, Y., Ding, J., Fan, C. M. & Zhu, P. Interferon-γ contributes to HLA-B27-associated unfolded protein response in spondyloarthropathies. J. Rheumatol. 39, 574–582 (2012).

    CAS  PubMed  Google Scholar 

  137. Smith, J. A. et al. Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-γ dysregulation. Arthritis Rheum. 58, 1640–1649 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zeng, L., Lindstrom, M. J. & Smith, J. A. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum. 63, 3807–3817 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Neerinckx, B., Carter, S. & Lories, R. J. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann. Rheum. Dis. 73, 629–630 (2014).

    PubMed  Google Scholar 

  140. Dong, W. et al. Upregulation of 78-kDa glucose-regulated protein in macrophages in peripheral joints of active ankylosing spondylitis. Scand. J. Rheumatol. 37, 427–434 (2008).

    CAS  PubMed  Google Scholar 

  141. Dangoria, N. S. et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J. Biol. Chem. 277, 23459–23468 (2002).

    CAS  PubMed  Google Scholar 

  142. Antoniou, A. N., Ford, S., Taurog, J. D., Butcher, G. W. & Powis, S. J. Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J. Biol. Chem. 279, 8895–8902 (2004).

    CAS  PubMed  Google Scholar 

  143. Jeanty, C. et al. HLA-B27 subtype oligomerization and intracellular accumulation patterns correlate with predisposition to spondyloarthritis. Arthritis Rheumatol. 66, 2113–2123 (2014).

    CAS  PubMed  Google Scholar 

  144. Loll, B. et al. Increased conformational flexibility characterizes HLA-B*27 subtypes associated with ankylosing spondylitis. Arthritis Rheumatol. 68, 1172–1182 (2016).

    CAS  PubMed  Google Scholar 

  145. Bird, L. A. et al. Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur. J. Immunol. 33, 748–759 (2003).

    CAS  PubMed  Google Scholar 

  146. McHugh, K. et al. Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. Ann. Rheum. Dis. 73, 763–770 (2014).

    CAS  PubMed  Google Scholar 

  147. Wong-Baeza, I. et al. KIR3DL2 binds to HLA-B27 dimers and free H chains more strongly than other HLA class I and promotes the expansion of T cells in ankylosing spondylitis. J. Immunol. 190, 3216–3224 (2013).

    CAS  PubMed  Google Scholar 

  148. Ridley, A. et al. Activation-induced killer cell immunoglobulin-like receptor 3DL2 binding to HLA-B27 licenses pathogenic T cell differentiation in spondyloarthritis. Arthritis Rheumatol. 68, 901–914 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dalakas, M. C. & Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 362, 971–982 (2003).

    CAS  PubMed  Google Scholar 

  150. Miller, F. W. et al. Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes. Genes Immun. 16, 470–480 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Miller, F. W. et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum. 65, 3239–3247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Rayavarapu, S., Coley, W. & Nagaraju, K. An update on pathogenic mechanisms of inflammatory myopathies. Curr. Opin. Rheumatol. 23, 579–584 (2011).

    CAS  PubMed  Google Scholar 

  153. Fasth, A. E. et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J. Immunol. 183, 4792–4799 (2009).

    CAS  PubMed  Google Scholar 

  154. Pandya, J. M. et al. Expanded T cell receptor Vβ-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 62, 3457–3466 (2010).

    CAS  PubMed  Google Scholar 

  155. Szodoray, P. et al. Idiopathic inflammatory myopathies, signified by distinctive peripheral cytokines, chemokines and the TNF family members B-cell activating factor and a proliferation inducing ligand. Rheumatology 49, 1867–1877 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Krystufková, O. et al. Increased serum levels of B cell activating factor (BAFF) in subsets of patients with idiopathic inflammatory myopathies. Ann. Rheum. Dis. 68, 836–843 (2009).

    PubMed  Google Scholar 

  157. Bilgic, H. et al. Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum. 60, 3436–3446 (2009).

    CAS  PubMed  Google Scholar 

  158. Gono, T. et al. Interleukin-18 is a key mediator in dermatomyositis: potential contribution to development of interstitial lung disease. Rheumatology (Oxford) 49, 1878–1881 (2010).

    CAS  Google Scholar 

  159. Grundtman, C. et al. Effects of HMGB1 on in vitro responses of isolated muscle fibers and functional aspects in skeletal muscles of idiopathic inflammatory myopathies. FASEB J. 24, 570–578 (2010).

    CAS  PubMed  Google Scholar 

  160. Baechler, E. C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13, 59–68 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Walsh, R. J. et al. Type I interferon-inducible gene expression in blood is present and reflects disease activity in dermatomyositis and polymyositis. Arthritis Rheum. 56, 3784–3792 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Baechler, E. C., Bilgic, H. & Reed, A. M. Type I interferon pathway in adult and juvenile dermatomyositis. Arthritis Res. Ther. 13, 249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Liao, A. P. et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann. Rheum. Dis. 70, 831–836 (2011).

    CAS  PubMed  Google Scholar 

  164. Kim, H. J. et al. Endoplasmic reticulum stress markers and ubiquitin-proteasome pathway activity in response to a 200-km run. Med. Sci. Sports Exerc. 43, 18–25 (2011).

    CAS  PubMed  Google Scholar 

  165. Deldicque, L. et al. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am. J. Physiol. Endocrinol. Metab. 299, E695–E705 (2010).

    CAS  PubMed  Google Scholar 

  166. Rayavarapu, S., Coley, W. & Nagaraju, K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr. Rheumatol. Rep. 14, 238–243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Nagaraju, K. et al. A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clin. Exp. Immunol. 113, 407–414 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Emslie-Smith, A. M., Arahata, K. & Engel, A. G. Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum. Pathol. 20, 224–231 (1989).

    CAS  PubMed  Google Scholar 

  169. Nagaraju, K. et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc. Natl Acad. Sci. USA 97, 9209–9214 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    CAS  PubMed  Google Scholar 

  171. Alger, H. M. et al. The role of TRAIL in mediating autophagy in myositis skeletal muscle: a potential nonimmune mechanism of muscle damage. Arthritis Rheum. 63, 3448–3457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. van den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).

    PubMed  PubMed Central  Google Scholar 

  173. Pope, J. E. & Johnson, S. R. New classification criteria for systemic sclerosis (scleroderma). Rheum. Dis. Clin. North Am. 41, 383–398 (2015).

    PubMed  Google Scholar 

  174. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    CAS  PubMed  Google Scholar 

  175. Sgonc, R. et al. Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J. Clin. Invest. 98, 785–792 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Helmbold, P., Fiedler, E., Fischer, M. & Marsch, W. C. Hyperplasia of dermal microvascular pericytes in scleroderma. J. Cutan. Pathol. 31, 431–440 (2004).

    PubMed  Google Scholar 

  177. Fleming, J. N. et al. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS ONE 3, e1452 (2008).

    PubMed  PubMed Central  Google Scholar 

  178. Korman, B. D. & Criswell, L. A. Recent advances in the genetics of systemic sclerosis: toward biological and clinical significance. Curr. Rheumatol. Rep. 17, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Lenna, S., Han, R. & Trojanowska, M. Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 66, 530–537 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Arnett, F. C. et al. Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma. Association with an Amerindian HLA haplotype. Arthritis Rheum. 39, 1362–1370 (1996).

    CAS  PubMed  Google Scholar 

  181. Grigolo, B. et al. Anti-topoisomerase II α autoantibodies in systemic sclerosis — association with pulmonary hypertension and HLA-B35. Clin. Exp. Immunol. 121, 539–543 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lenna, S. et al. HLA-B35 upregulates endothelin-1 and downregulates endothelial nitric oxide synthase via endoplasmic reticulum stress response in endothelial cells. J. Immunol. 184, 4654–4661 (2010).

    CAS  PubMed  Google Scholar 

  183. Lenna, S. et al. Increased expression of endoplasmic reticulum stress and unfolded protein response genes in peripheral blood mononuclear cells from patients with limited cutaneous systemic sclerosis and pulmonary arterial hypertension. Arthritis Rheum. 65, 1357–1366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Iwawaki, T., Akai, R., Yamanaka, S. & Kohno, K. Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc. Natl Acad. Sci. USA 106, 16657–16662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zeng, L. et al. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation 127, 1712–1722 (2013).

    CAS  PubMed  Google Scholar 

  186. Binet, F. & Sapieha, P. ER Stress and angiogenesis. Cell Metab. 22, 560–575 (2015).

    CAS  PubMed  Google Scholar 

  187. Paridaens, A. et al. Endoplasmic reticulum stress and angiogenesis: is there an interaction between them? Liver Int. 34, e10–e18 (2014).

    CAS  PubMed  Google Scholar 

  188. Ghosh, R. et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS ONE 5, e9575 (2010).

    PubMed  PubMed Central  Google Scholar 

  189. Lenna, S. et al. HLA-B35 and dsRNA induce endothelin-1 via activation of ATF4 in human microvascular endothelial cells. PLoS ONE 8, e56123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Ho, Y. Y., Lagares, D., Tager, A. M. & Kapoor, M. Fibrosis — a lethal component of systemic sclerosis. Nat. Rev. Rheumatol. 10, 390–402 (2014).

    CAS  PubMed  Google Scholar 

  191. Eckes, B., Mauch, C., Hüppe, G. & Krieg, T. Differential regulation of transcription and transcript stability of pro-α 1(I) collagen and fibronectin in activated fibroblasts derived from patients with systemic scleroderma. Biochem. J. 315, 549–554 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7, R1113–R1123 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Baek, H. A. et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 46, 731–739 (2012).

    CAS  PubMed  Google Scholar 

  194. Mohan, C. & Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 11, 329–341 (2015).

    CAS  PubMed  Google Scholar 

  195. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    CAS  PubMed  Google Scholar 

  196. Olsen, N. J. & Karp, D. R. Autoantibodies and SLE: the threshold for disease. Nat. Rev. Rheumatol. 10, 181–186 (2014).

    PubMed  Google Scholar 

  197. Todd, D. J. et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J. Exp. Med. 206, 2151–2159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Lee, A. H., Iwakoshi, N. N., Anderson, K. C. & Glimcher, L. H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl Acad. Sci. USA 100, 9946–9951 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Obeng, E. A. et al. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107, 4907–4916 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    CAS  PubMed  Google Scholar 

  201. Ichikawa, H. T. et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 64, 493–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Muchamuel, T. et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15, 781–787 (2009).

    CAS  PubMed  Google Scholar 

  203. Garaud, J. C. et al. B cell signature during inactive systemic lupus is heterogeneous: toward a biological dissection of lupus. PLoS ONE 6, e23900 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Lee, W. S. et al. A pathogenic role for ER stress-induced autophagy and ER chaperone GRP78/BiP in T lymphocyte systemic lupus erythematosus. J. Leukoc. Biol. 97, 425–433 (2015).

    PubMed  Google Scholar 

  205. Wang, J. et al. Deficiency of IRE1 and PERK signal pathways in systemic lupus erythematosus. Am. J. Med. Sci. 348, 465–473 (2014).

    PubMed  Google Scholar 

  206. Guo, G. et al. Induction of apoptosis coupled to endoplasmic reticulum stress through regulation of CHOP and JNK in bone marrow mesenchymal stem cells from patients with systemic lupus erythematosus. J. Immunol. Res. 2015, 183738 (2015).

    PubMed  PubMed Central  Google Scholar 

  207. Hirabayashi, Y. et al. The endoplasmic reticulum stress-inducible protein, Herp, is a potential triggering antigen for anti-DNA response. J. Immunol. 184, 3276–3283 (2010).

    CAS  PubMed  Google Scholar 

  208. Hunter, D. J. & Felson, D. T. Osteoarthritis. BMJ 332, 639–642 (2006).

    PubMed  PubMed Central  Google Scholar 

  209. Lane, N. E. Clinical practice: osteoarthritis of the hip. N. Engl. J. Med. 357, 1413–1421 (2007).

    CAS  PubMed  Google Scholar 

  210. Lories, R. J. & Luyten, F. P. The bone–cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 7, 43–49 (2011).

    CAS  PubMed  Google Scholar 

  211. Luyten, F. P., Lories, R. J., Verschueren, P., se Vlam, K. & Westhovens, R. Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Pract. Res. Clin. Rheumatol. 20, 829–848 (2006).

    CAS  PubMed  Google Scholar 

  212. Goldring, M. B. & Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci. 1192, 230–237 (2010).

    CAS  PubMed  Google Scholar 

  213. Zemmyo, M., Meharra, E. J., Kühn, K., Creighton-Achermann, L. & Lotz, M. Accelerated, aging-dependent development of osteoarthritis in α1 integrin-deficient mice. Arthritis Rheum. 48, 2873–2880 (2003).

    CAS  PubMed  Google Scholar 

  214. Mistry, D., Oue, Y., Chambers, M. G., Kayser, M. V. & Mason, R. M. Chondrocyte death during murine osteoarthritis. Osteoarthritis Cartilage 12, 131–141 (2004).

    CAS  PubMed  Google Scholar 

  215. Kim, H. A., Lee, Y. J., Seong, S. C., Choe, K. W. & Song, Y. W. Apoptotic chondrocyte death in human osteoarthritis. J. Rheumatol. 27, 455–462 (2000).

    CAS  PubMed  Google Scholar 

  216. Thomas, C. M., Fuller, C. J., Whittles, C. E. & Sharif, M. Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthritis Cartilage 15, 27–34 (2007).

    CAS  PubMed  Google Scholar 

  217. Walsh, D. A. et al. Angiogenesis and nerve growth factor at the osteochondral junction in rheumatoid arthritis and osteoarthritis. Rheumatology (Oxford) 49, 1852–1861 (2010).

    CAS  Google Scholar 

  218. Prasadam, I. et al. ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum. 62, 1349–1360 (2010).

    CAS  PubMed  Google Scholar 

  219. Prasadam, I. et al. Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone 46, 226–235 (2010).

    CAS  PubMed  Google Scholar 

  220. Takada, K. et al. Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int. J. Exp. Pathol. 92, 232–242 (2011).

    PubMed  PubMed Central  Google Scholar 

  221. Guo, F. J. et al. ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell. Signal. 26, 332–342 (2014).

    CAS  PubMed  Google Scholar 

  222. Uehara, Y. et al. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthritis Cartilage 22, 1007–1017 (2014).

    CAS  PubMed  Google Scholar 

  223. Liu, C., Cao, Y., Yang, X., Shan, P. & Liu, H. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis. Int. J. Mol. Med. 36, 1081–1087 (2015).

    PubMed  Google Scholar 

  224. Lippiello, L., Walsh, T. & Fienhold, M. The association of lipid abnormalities with tissue pathology in human osteoarthritic articular cartilage. Metabolism 40, 571–576 (1991).

    CAS  PubMed  Google Scholar 

  225. Haywood, J. & Yammani, R. R. Free fatty acid palmitate activates unfolded protein response pathway and promotes apoptosis in meniscus cells. Osteoarthritis Cartilage 24, 942–945 (2016).

    CAS  PubMed  Google Scholar 

  226. Nakano, S. et al. Remogliflozin etabonate improves fatty liver disease in diet-induced obese male mice. J. Clin. Exp. Hepatol. 5, 190–198 (2015).

    PubMed  PubMed Central  Google Scholar 

  227. Watkin, L. B. et al. COPA mutations impair ER–Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47, 654–660 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Todd, D. J., Lee, A. H. & Glimcher, L. H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8, 663–674 (2008).

    CAS  PubMed  Google Scholar 

  229. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A. & Siegel, R. M. Lighting the fires within: the cell biology of autoinflammatory diseases. Nat. Rev. Immunol. 12, 570–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    CAS  PubMed  Google Scholar 

  231. Lobito, A. A. et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108, 1320–1327 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Rebelo, S. L. et al. Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum. 54, 2674–2687 (2006).

    CAS  PubMed  Google Scholar 

  233. Todd, I. et al. Mutant tumor necrosis factor receptor associated with tumor necrosis factor receptor-associated periodic syndrome is altered antigenically and is retained within patients' leukocytes. Arthritis Rheum. 56, 2765–2773 (2007).

    CAS  PubMed  Google Scholar 

  234. Simon, A. et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc. Natl Acad. Sci. USA 107, 9801–9806 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Dickie, L. J. et al. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann. Rheum. Dis. 71, 2035–2043 (2012).

    CAS  PubMed  Google Scholar 

  236. Liu, Y. et al. Preventing oxidative stress: a new role for XBP1. Cell Death Differ. 16, 847–857 (2009).

    CAS  PubMed  Google Scholar 

  237. Bulua, A. C. et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research of R.A.C. and F.N. is supported by the NIH and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) Intramural Research Program grant ZO1-AR-041184.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for this article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Robert A. Colbert.

Ethics declarations

Competing interests

R.A.C. declares that he has been the Principal Investigator on a cooperative research and development agreement between Eli Lilly and the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). F.N. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navid, F., Colbert, R. Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nat Rev Rheumatol 13, 25–40 (2017). https://doi.org/10.1038/nrrheum.2016.192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2016.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing