Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of potassium ion channels in detrusor smooth muscle function and dysfunction

Abstract

Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field.

Key Points

  • K+ channels control the excitability and contractility of detrusor smooth muscle (DSM)

  • Large-conductance voltage-activated and Ca2+-activated (BK) channels, small-conductance Ca2+-activated K+ (SK) channels, two-pore-domain K+ (K2P) channels and voltage-gated K+ (KV) channels are important regulators of DSM function

  • BK channelopathy is implicated in some forms of detrusor overactivity and related overactive bladder

  • BK, SK, K2P and KV channels represent novel targets for pharmacological or gene-therapy-mediated control of DSM function

  • The KV channel family is the most diverse; therefore, it is likely that many new DSM KV channels, some of them bladder-specific, are yet to be discovered

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the transmembrane architecture and subunit stoichiometry of the K+ channel types expressed in detrusor smooth muscle cells.
Figure 2: Schematic illustration of the detrusor smooth muscle action potential and the roles of various K+ channels in determining resting membrane potential and action potential.
Figure 3: Hypothetical pharmacological dissection of KCa and KV currents in detrusor smooth muscle cells using various K+ channel-selective inhibitors.
Figure 4: Schematic illustration of the functional coupling between the β3-AR and the BK channel in a detrusor smooth muscle cell.

Similar content being viewed by others

References

  1. Andersson, K. E. & Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Brading, A. F. Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. J. Physiol. 570, 13–22 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Christ, G. J. & Hodges, S. Molecular mechanisms of detrusor and corporal myocyte contraction: identifying targets for pharmacotherapy of bladder and erectile dysfunction. Br. J. Pharmacol. 147 (Suppl. 2), S41–S55 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gopalakrishnan, M. & Shieh, C. C. Potassium channel subtypes as molecular targets for overactive bladder and other urological disorders. Expert Opin. Ther. Targets 8, 437–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Hashitani, H., Brading, A. F. & Suzuki, H. Correlation between spontaneous electrical, calcium and mechanical activity in detrusor smooth muscle of the guinea-pig bladder. Br. J. Pharmacol. 141, 183–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. McCloskey, K. D. Characterization of outward currents in interstitial cells from the guinea pig bladder. J. Urol. 173, 296–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. McCloskey, K. D. Interstitial cells in the urinary bladder—localization and function. Neurourol. Urodyn. 29, 82–87 (2010).

    Article  PubMed  Google Scholar 

  8. McCloskey, K. D., Anderson, U. A. & Carson, C. KCNQ currents and their contribution to resting membrane potential and the excitability of interstitial cells of cajal from the guinea pig bladder. J. Urol. 182, 330–336 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ashcroft, F. M. From molecule to malady. Nature 440, 440–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Petkov, G. V. in Pharmacology: Principles and Practice (eds Hacker, M., Messer, W. S. & Bachmann, K. A.) 387–427 (Academic Press, 2009).

    Book  Google Scholar 

  11. Creed, K. E., Ishikawa, S. & Ito, Y. Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J. Physiol. 338, 149–164 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fujii, K., Foster, C. D., Brading, A. F. & Parekh, A. B. Potassium channel blockers and the effects of cromakalim on the smooth muscle of the guinea-pig bladder. Br. J. Pharmacol. 99, 779–785 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayase, M., Hashitani, H., Kohri, K. & Suzuki, H. Role of K+ channels in regulating spontaneous activity in detrusor smooth muscle in situ in the mouse bladder. J. Urol. 181, 2355–2365 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Heppner, T. J., Bonev, A. D. & Nelson, M. T. Ca2+-activated K+ channels regulate action potential repolarization in urinary bladder smooth muscle. Am. J. Physiol. 273, C110–C117 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Nakahira, Y. et al. Effects of isoproterenol on spontaneous excitations in detrusor smooth muscle cells of the guinea pig. J. Urol. 166, 335–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Petkov, G. V., Heppner, T. J., Bonev, A. D., Herrera, G. M. & Nelson, M. T. Low levels of KATP channel activation decrease excitability and contractility of urinary bladder. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1427–R1433 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, S. M. et al. Beta-adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+ channel. Am. J. Physiol. Renal Physiol. 295, F1149–F1157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, M., Kellett, W. F. & Petkov, G. V. Voltage-gated K+ channels sensitive to stromatoxin-1 regulate myogenic and neurogenic contractions of rat urinary bladder smooth muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R177–R184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrera, G. M., Heppner, T. J. & Nelson, M. T. Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R60–R68 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Herrera, G. M. & Nelson, M. T. Differential regulation of SK and BK channels by Ca2+ signals from Ca2+ channels and ryanodine receptors in guinea-pig urinary bladder myocytes. J. Physiol. 541, 483–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herrera, G. M. et al. Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel. J. Physiol. 551, 893–903 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hristov, K. L., Chen, M., Kellett, W. F., Rovner, E. S. & Petkov, G. V. Large conductance voltage- and Ca2+-activated K+ channels regulate human detrusor smooth muscle function. Am. J. Physiol. Cell Physiol. 301, C903–C912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hristov, K. L. et al. Stimulation of β3-adrenoceptors relaxes rat urinary bladder smooth muscle via activation of the large-conductance Ca2+-activated K+ channels. Am. J. Physiol. Cell Physiol. 295, C1344–C1353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petkov, G. V. et al. β1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle. J. Physiol. 537, 443–452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashitani, H. & Brading, A. F. Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br. J. Pharmacol. 140, 146–158 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Imai, T. et al. Effects of different types of K+ channel modulators on the spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle. Acta Physiol. Scand. 173, 323–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Andersson, K. E. & Wein, A. J. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol. Rev. 56, 581–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Baker, S. A. et al. Role of TREK-1 potassium channel in bladder overactivity after partial bladder outlet obstruction in mouse. J. Urol. 183, 793–800 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Chang, S. et al. Detrusor overactivity is associated with downregulation of large-conductance calcium- and voltage-activated potassium channel protein. Am. J. Physiol. Renal Physiol. 298, F1416–F1423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hristov, K., Afeli, S., Kellett, W. F., Rovner, E. & Petkov, G. V. Neurogenic detrusor overactivity is associated with decreased BK channel activity: electrophysiological and functional studies on human detrusor smooth muscle. J. Urol. 183, e73–e74 (2010).

    Article  Google Scholar 

  31. Jiang, H. H., Song, B., Lu, G. S., Wen, Q. J. & Jin, X. Y. Loss of ryanodine receptor calcium-release channel expression associated with overactive urinary bladder smooth muscle contractions in a detrusor instability model. BJU Int. 96, 428–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Meredith, A. L., Thorneloe, K. S., Werner, M. E., Nelson, M. T. & Aldrich, R. W. Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J. Biol. Chem. 279, 36746–36752 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Oger, S. et al. Effects of potassium channel modulators on myogenic spontaneous phasic contractile activity in human detrusor from neurogenic patients. BJU Int. 108, 604–611 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Thorneloe, K. S., Meredith, A. L., Knorn, A. M., Aldrich, R. W. & Nelson, M. T. Urodynamic properties and neurotransmitter dependence of urinary bladder contractility in the BK channel deletion model of overactive bladder. Am. J. Physiol. Renal Physiol. 289, F604–F610 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, M. & Petkov, G. V. Identification of large conductance calcium activated potassium channel accessory beta4 subunit in rat and mouse bladder smooth muscle. J. Urol. 182, 374–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hristov, K., Chen, M., Afeli, S., Rovner, E. & Petkov, G. V. Expression and function of voltage-gated K+ channels sensitive to stromatoxin-1 in human detrusor smooth muscle. J. Urol. 185, e91 (2011).

    Article  Google Scholar 

  37. Hristov, K. L. et al. KV2.1 and electrically silent KV channel subunits control excitability and contractility of Guinea pig detrusor smooth muscle. Am. J. Physiol. Cell Physiol. http://dx.doi.org/10.1152/ajpcell.00303.2010.

  38. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. Klockner, U. & Isenberg, G. Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch. 405, 329–339 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Kellett, W. F., Cui, X., Hristov, K. L. & Petkov, G. V. SK and IK Ca2+-activated K+ channels as novel pharmacological targets to control urinary bladder smooth muscle excitability and contractility. FASEB J. 22, 1201–1219 (2008).

    Google Scholar 

  41. Parajuli, S. P., Soder, R. P., Hristov, K. L. & Petkov, G. V. Pharmacological activation of SK channels with SKA-31 decreases Guinea pig detrusor smooth muscle excitability and contractility. J. Pharmacol. Exp. Ther. http://dx.doi.org/10.1124/jpet.111.186213 (2011).

  42. Horn, R. & Marty, A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92, 145–159 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Petkov, G. V. & Nelson, M. T. Differential regulation of Ca2+-activated K+ channels by β-adrenoceptors in guinea pig urinary bladder smooth muscle. Am. J. Physiol. Cell Physiol. 288, C1255–C1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Sprossmann, F. et al. Inducible knockout mutagenesis reveals compensatory mechanisms elicited by constitutive BK channel deficiency in overactive murine bladder. FEBS J. 276, 1680–1697 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Pandita, R. K., Ronn, L. C., Jensen, B. S. & Andersson, K. E. Urodynamic effects of intravesical administration of the new small/intermediate conductance calcium activated potassium channel activator NS309 in freely moving, conscious rats. J. Urol. 176, 1220–1224 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Streng, T., Christoph, T. & Andersson, K. E. Urodynamic effects of the K+ channel (KCNQ) opener retigabine in freely moving, conscious rats. J. Urol. 172, 2054–2058 (2004).

    Article  PubMed  Google Scholar 

  47. Thorneloe, K. S. & Nelson, M. T. Properties and molecular basis of the mouse urinary bladder voltage-gated K+ current. J. Physiol. 549, 65–74 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gutman, G. A. et al. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. 55, 583–586 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Gutman, G. A. et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Wulff, H., Castle, N. A. & Pardo, L. A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov. 8, 982–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davies, A. M., Batchelor, T. J., Eardley, I. & Beech, D. J. Potassium channel KVα1 subunit expression and function in human detrusor muscle. J. Urol. 167, 1881–1886 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Ohya, S., Tanaka, M., Watanabe, M. & Maizumi, Y. Diverse expression of delayed rectifier K+ channel subtype transcripts in several types of smooth muscles of the rat. J. Smooth Muscle Res. 36, 101–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Gan, X. G., An, R. H., Bai, Y. F. & Zong, D. B. Expressions of voltage-gated K+ channel 2.1 and 2.2 in rat bladder with detrusor hyperreflexia. Chin. Med. J. (Engl.) 121, 1574–1577 (2008).

    Article  CAS  Google Scholar 

  54. Escoubas, P., Diochot, S., Celerier, M. L., Nakajima, T. & Lazdunski, M. Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol. Pharmacol. 62, 48–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Moreno-Dominguez, A., Cidad, P., Miguel-Velado, E., Lopez-Lopez, J. R. & Perez-Garcia, M. T. De novo expression of Kv6.3 contributes to changes in vascular smooth muscle cell excitability in a hypertensive mice strain. J. Physiol. 587, 625–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Rode, F., Svalo, J., Sheykhzade, M. & Ronn, L. C. Functional effects of the KCNQ modulators retigabine and XE991 in the rat urinary bladder. Eur. J. Pharmacol. 638, 121–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Herrera, G. M., Heppner, T. J. & Nelson, M. T. Voltage dependence of the coupling of Ca2+ sparks to BKCa channels in urinary bladder smooth muscle. Am. J. Physiol. Cell Physiol. 280, C481–C490 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Soder, R. P. & Petkov, G. V. Large conductance Ca2+-activated K+ channel activation with NS1619 decreases myogenic and neurogenic contractions of rat detrusor smooth muscle. Eur. J. Pharmacol. 670, 252–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suarez-Kurtz, G., Garcia, M. L. & Kaczorowski, G. J. Effects of charybdotoxin and iberiotoxin on the spontaneous motility and tonus of different guinea pig smooth muscle tissues. J. Pharmacol. Exp. Ther. 259, 439–443 (1991).

    CAS  PubMed  Google Scholar 

  60. Knaus, H. G. et al. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33, 5819–5828 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Layne, J. J., Nausch, B., Olesen, S. P. & Nelson, M. T. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R378–R384 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Siemer, C., Bushfield, M., Newgreen, D. & Grissmer, S. Effects of NS1608 on MaxiK channels in smooth muscle cells from urinary bladder. J. Membr. Biol. 173, 57–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Ohi, Y. et al. Local Ca2+ transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea-pig vas deferens and urinary bladder. J. Physiol. 534, 313–326 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kita, M. et al. Effects of bladder outlet obstruction on properties of Ca2+-activated K+ channels in rat bladder. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1310–R1319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hashitani, H. & Brading, A. F. Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder. Br. J. Pharmacol. 140, 159–169 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Darblade, B. et al. Effects of potassium channel modulators on human detrusor smooth muscle myogenic phasic contractile activity: potential therapeutic targets for overactive bladder. Urology 68, 442–448 (2006).

    Article  PubMed  Google Scholar 

  67. Herrera, G. M., Etherton, B., Nausch, B. & Nelson, M. T. Negative feedback regulation of nerve-mediated contractions by KCa channels in mouse urinary bladder smooth muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R402–R409 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kellett, W. F. & Petkov, G. V. Role of Ca2+-activated K+ channel in the neurogenic contractions induced by electrical field stimulation in detrusor smooth muscle isolated from rats and guinea pigs. Biophys. J. 98, 125a–126a (2010).

    Article  Google Scholar 

  69. Malysz, J. et al. Functional characterization of large conductance calcium-activated K+ channel openers in bladder and vascular smooth muscle. Naunyn Schmiedebergs Arch. Pharmacol. 369, 481–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Parajuli, S. P., Hristov, K., Pandey, R., Rovner, E. S. & Petkov, G. V. BK channel activation with NS1619 decreases excitability and contractility of human urinary bladder smooth muscle. FASEB J. 25, 1115.14 (2011).

    Google Scholar 

  71. Nelson, M. T. et al. Relaxation of arterial smooth muscle by calcium sparks. Science 270, 633–637 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Takemoto, J. et al. Potentiation of potassium currents by β-adrenoceptor agonists in human urinary bladder smooth muscle cells: a possible electrical mechanism of relaxation. Pharmacology 81, 251–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Kobayashi, H., Adachi-Akahane, S. & Nagao, T. Involvement of BKCa channels in the relaxation of detrusor muscle via β-adrenoceptors. Eur. J. Pharmacol. 404, 231–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Li, L. et al. Changes in T-type calcium channel and its subtypes in overactive detrusor of the rats with partial bladder outflow obstruction. Neurourol. Urodyn. 26, 870–878 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Aydin, M., Wang, H.-Z., Melman, A. & DiSanto, M. E. Large conductance calcium-activated potassium channel activity, as determined by whole cell patch clamp recording, is decreased in urinary bladder smooth muscle cells from male rats with partial urethral obstruction. J. Urol. 181 (Suppl.), 542 (2009).

    Article  Google Scholar 

  76. Hotta, S. et al. Ryanodine receptor type 2 deficiency changes excitation-contraction coupling and membrane potential in urinary bladder smooth muscle. J. Physiol. 582, 489–506 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Davies, K. P. et al. Ageing causes cytoplasmic retention of MaxiK channels in rat corporal smooth muscle cells. Int. J. Impot. Res. 19, 371–377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Toro, L. et al. Aging, ion channel expression, and vascular function. Vascul. Pharmacol. 38, 73–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Christ, G. J. et al. Bladder injection of “naked” hSlo/pcDNA3 ameliorates detrusor hyperactivity in obstructed rats in vivo. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1699–R1709 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Christ, G. J. Potential applications of gene therapy/transfer to the treatment of lower urinary tract diseases/disorders. Handb. Exp. Pharmacol. 202, 255–265 (2011).

    Article  CAS  Google Scholar 

  81. Melman, A., Bar-Chama, N., McCullough, A., Davies, K. & Christ, G. Plasmid-based gene transfer for treatment of erectile dysfunction and overactive bladder: results of a phase I trial. Isr. Med. Assoc. J. 9, 143–146 (2007).

    CAS  PubMed  Google Scholar 

  82. Melman, A. & Feder, M. Gene therapy for the treatment of erectile dysfunction. Nat. Clin. Pract. Urol. 5, 60–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Melman, A., Rojas, L. & Christ, G. Gene transfer for erectile dysfunction: will this novel therapy be accepted by urologists? Curr. Opin. Urol. 19, 595–600 (2009).

    Article  PubMed  Google Scholar 

  84. Maylie, J., Bond, C. T., Herson, P. S., Lee, W. S. & Adelman, J. P. Small conductance Ca2+-activated K+ channels and calmodulin. J. Physiol. 554, 255–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Thorneloe, K. S. et al. Small-conductance, Ca2+-activated K+ channel 2 is the key functional component of SK channels in mouse urinary bladder. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1737–R1743 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Nielsen, J. S. et al. Effect of the SK/IK channel modulator 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591) on contractile force in rat, pig and human detrusor smooth muscle. BJU Int. 108, 771–777 (2011).

    CAS  PubMed  Google Scholar 

  87. Hougaard, C. et al. A positive modulator of KCa2 and KCa3 channels, 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), inhibits bladder afferent firing in vitro and bladder overactivity in vivo. J. Pharmacol. Exp. Ther. 328, 28–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Sankaranarayanan, A. et al. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol. Pharmacol. 75, 281–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, M. X. et al. Small and intermediate conductance Ca2+-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch. Pharmacol. 369, 602–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Ohya, S. et al. SK4 encodes intermediate conductance Ca2+-activated K+ channels in mouse urinary bladder smooth muscle cells. Jpn J. Pharmacol. 84, 97–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Wulff, H. et al. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc. Natl Acad. Sci. USA 97, 8151–8156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kajioka, S. et al. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways. J. Pharmacol. Exp. Ther. 327, 114–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Kajioka, S. et al. Diphosphate regulation of adenosine triphosphate sensitive potassium channel in human bladder smooth muscle cells. J. Urol. 186, 736–744 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Davis-Taber, R. et al. [125I]A-312110, a novel high-affinity 1,4-dihydropyridine ATP-sensitive K+ channel opener: characterization and pharmacology of binding. Mol. Pharmacol. 64, 143–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Shieh, C. C. et al. Functional implication of spare ATP-sensitive K+ channels in bladder smooth muscle cells. J. Pharmacol. Exp. Ther. 296, 669–675 (2001).

    CAS  PubMed  Google Scholar 

  96. Foster, C. D., Fujii, K., Kingdon, J. & Brading, A. F. The effect of cromakalim on the smooth muscle of the guinea-pig urinary bladder. Br. J. Pharmacol. 97, 281–291 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heppner, T. J., Bonev, A., Li, J. H., Kau, S. T. & Nelson, M. T. Zeneca ZD6169 activates ATP-sensitive K+ channels in the urinary bladder of the guinea pig. Pharmacology 53, 170–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Andersson, K. E. et al. Effects of pinacidil on bladder muscle. Drugs 36 (Suppl. 7), 41–49 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Bonev, A. D. & Nelson, M. T. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am. J. Physiol. 264, C1190–C1200 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Sanders, K. M. & Koh, S. D. Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation. J. Physiol. 570, 37–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Baker, S. A. et al. Methionine and its derivatives increase bladder excitability by inhibiting stretch-dependent K+ channels. Br. J. Pharmacol. 153, 1259–1271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Beckett, E. A. et al. Functional and molecular identification of pH-sensitive K+ channels in murine urinary bladder smooth muscle. BJU Int. 102, 113–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Tertyshnikova, S. et al. BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties. J. Pharmacol. Exp. Ther. 313, 250–259 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the members of his research group (Drs J. Malysz, K. Hristov, S. Parajuli, W. Xin, Ms A. Smith, Ms R. Soder, Mr S. Afeli and Mr Q. Cheng), as well as Dr J. Schnellmann for the critical evaluation of the manuscript. This work was supported by grants from the NIH (DK084284 and DK083687).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkov, G. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol 9, 30–40 (2012). https://doi.org/10.1038/nrurol.2011.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.194

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research