Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of connexins in prostate cancer promotion and progression

Abstract

Prostate cancer is a prevalent disease that is characterized by a presumably long latency period and a moderate propensity to metastasize. Although a range of mechanisms have been implicated in prostate carcinogenesis, the factors determining the initiation of metastasis remain obscure. The synchronized function of prostate cells depends on their metabolic and electrical coupling; disturbance of these functions has long been suggested to be integral to prostate carcinogenesis. However, although connexins form intercellular channels involved in gap-junction-mediated intercellular coupling (GJIC), whether these proteins also have GJIC-independent roles in cancer progression and metastasis remains a matter of debate. Some data indicate a correlation between connexin expression and the invasive potential of prostate cancer cells, which points to stage-specific functions of connexins during prostate cancer development. For example, restoration of connexin expression seems to be crucial for the formation of invasive cell subsets within heterogeneous prostate cancer cell populations that have undergone aberrant differentiation. Consequently, the clinical application of therapeutic and prophylactic approaches focused on the modulation of connexin expression in prostate cancer cells should be reconsidered.

Key Points

  • Connexins are integral membrane proteins that form gap junctions, which are clusters of aqueous channels that directly link cytoplasmic compartments of neighboring cells and enable intercellular communication

  • Connexins can also modulate cellular traits crucial for cancer development, such as proliferation and migration, in a manner independent of gap junctions

  • The differential expression and functional incompatibility of connexons composed of connexin 32 and connexin 43 establish functional compartments within the prostate epithelium that determine its synchronized action

  • Inhibition of connexin expression promotes prostate carcinogenesis, whereas restoration of connexin function in subpopulations of prostate cancer cells seems to drive prostate cancer progression and metastasis

  • Treatment regimens that target connexin expression and function in prostate cancer cells should take into account the stage-specific roles of connexins and gap junctions in prostate cancer development

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the maintenance of prostate epithelial parenchyma.
Figure 2: Gap-junction-dependent and gap-junction-independent functions of connexins.
Figure 3: Hypothetical mechanism of the stage-dependent involvement of connexins in prostate cancer progression.

Similar content being viewed by others

References

  1. Joshua, A. M. et al. Prostatic preneoplasia and beyond. Biochim. Biophys. Acta 1785, 156–181 (2008).

    CAS  PubMed  Google Scholar 

  2. Schröder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    Article  PubMed  Google Scholar 

  3. Siegel, R., Ward, E., Brawley, O. & Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61, 212–236 (2011).

    Article  PubMed  Google Scholar 

  4. Sell, S. On the stem cell origin of cancer. Am. J. Pathol. 176, 2584–2594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sottoriva, A. et al. Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 70, 46–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lang, S. H., Frame, F. M. & Collins, A. T. Prostate cancer stem cells. J. Pathol. 217, 299–306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maitland, N. J. & Collins, A. A tumour stem cell hypothesis for the origins of prostate cancer. BJU Int. 96, 1219–1223 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bonkhoff, H. & Remberger, K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28, 98–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Bonkhoff, H. Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur. Urol. 30, 201–205 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P. & Witte, O. N. Identification of a cell of origin for human prostate cancer. Science 329, 568–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nauseef, J. T. & Henry, M. D. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nat. Rev. Urol. 8, 428–439 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Voog, J. & Jones, D. L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6, 103–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mol, A. J., Geldof, A. A., Meijer, G. A., van der Poel, H. G. & van Moorselaar, R. J. New experimental markers for early detection of high-risk prostate cancer: role of cell–cell adhesion and cell migration. J. Cancer Res. Clin. Oncol. 133, 687–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wei, C. J., Xu, X. & Lo, C. W. Connexins and cell signaling in development and disease. Annu. Rev. Cell Dev. Biol. 20, 811–838 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Trosko, J. E. Gap junctional intercellular communication as a biological “Rosetta stone” in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J. Membr. Biol. 218, 93–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Loewenstein, W. R. Junctional intercellular communication and the control of growth. Biochim. Biophys. Acta 560, 1–65 (1979).

    CAS  PubMed  Google Scholar 

  18. Chipman, J. K., Mally, A. & Edwards, G. O. Disruption of gap junctions in toxicity and carcinogenicity. Toxicol. Sci. 71, 146–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Luebeck, E. G., Buchmann, A., Schneider, D., Moolgavkar, S. H. & Schwarz, M. Modulation of liver tumorigenesis in connexin32-deficient mouse. Mutat. Res. 570, 33–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Czyż, J. The stage-specific function of gap junctions during tumourigenesis. Cell. Mol. Biol. Lett. 13, 92–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Cronier, L., Crespin, S., Strale, P. O., Defamie, N. & Mesnil, M. Gap junctions and cancer: new functions for an old story. Antioxid. Redox. Signal. 11, 323–338 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Dbouk, H. A., Mroue, R. M., El-Sabban, M. E. & Talhouk, R. S. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun. Signal. 7, 4 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mroue, R. M., El-Sabban, M. E. & Talhouk, R. S. Connexins and the gap in context. Integr. Biol. (Camb.) 3, 255–266 (2011).

    Article  CAS  Google Scholar 

  24. Hossain, M. Z. et al. Impaired expression and posttranslational processing of connexin43 and downregulation of gap junctional communication in neoplastic human prostate cells. Prostate 38, 55–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Habermann, H., Ray, V., Habermann, W. & Prins, G. S. Alterations in gap junction protein expression in human benign prostatic hyperplasia and prostate cancer. J. Urol. 167, 655–660 (2002).

    Article  PubMed  Google Scholar 

  26. Miekus, K., Czernik, M., Sroka, J., Czyż, J. & Madeja, Z. Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol. Cell 97, 893–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Tate, A. W. et al. Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66, 19–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Tarakanov, A. O. & Goncharova, L. B. Cell–cell nanotubes: Tunneling through several types of synapses. Commun. Integr. Biol. 2, 359–361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maeda, S. & Tsukihara, T. Structure of the gap junction channel and its implications for its biological functions. Cell. Mol. Life Sci. 68, 1115–1129 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, W. H. & Martin, P. E. Gap junctions: structure and function (review). Mol. Membr. Biol. 19, 121–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Burra, S. & Jiang, J. X. Regulation of cellular function by connexin hemichannels. Int. J. Biochem. Mol. Biol. 2, 119–128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Burra, S. et al. Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc. Natl Acad. Sci. USA 107, 13648–13653 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cotrina, M. L., Lin, J. H. & Nedergaard, M. Adhesive properties of connexin hemichannels. Glia 56, 1791–1798 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldberg, G. S., Moreno, A. P. & Lampe, P. D. Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J. Biol. Chem. 277, 36725–36730 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Salameh, A. Life cycle of connexins: regulation of connexin synthesis and degradation. Adv. Cardiol. 42, 57–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Peracchia, C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim. Biophys. Acta 1662, 61–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Laird, D. W. Life cycle of connexins in health and disease. Biochem. J. 394, 527–543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Solan, J. L. & Lampe, P. D. Connexin43 phosphorylation: structural changes and biological effects. Biochem. J. 419, 261–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, X. et al. Modulation of mouse neural crest cell motility by N-cadherin and connexin 43 gap junctions. J. Cell Biol. 154, 217–230 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Talhouk, R. S. et al. Heterocellular interaction enhances recruitment of α and β-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependent differentiation of mammary epithelial cells. Exp. Cell Res. 314, 3275–3291 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Francis, R. et al. Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS ONE 6, e26379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elias, L. A., Wang, D. D. & Kriegstein, A. R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448, 901–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Cina, C. et al. Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. J. Neurosci. 29, 2009–2021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. W., Nakayama, K., Nakayama, K. & Morita, I. A novel route for connexin 43 to inhibit cell proliferation: negative regulation of S-phase kinase-associated protein (Skp 2). Cancer Res. 63, 1623–1630 (2003).

    CAS  PubMed  Google Scholar 

  45. Kardami, E. et al. The role of connexins in controlling cell growth and gene expression. Prog. Biophys. Mol. Biol. 94, 245–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Dang, X., Doble, B. W. & Kardami, E. The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol. Cell Biochem. 242, 35–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Jerónimo, C. et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur. Urol. 60, 753–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Naus, C. C. & Laird, D. W. Implications and challenges of connexin connections to cancer. Nat. Rev. Cancer 10, 435–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Leithe, E., Sirnes, S., Omori, Y. & Rivedal, E. Downregulation of gap junctions in cancer cells. Crit. Rev. Oncog. 12, 225–256 (2006).

    Article  PubMed  Google Scholar 

  50. Zhu, D., Caveney, S., Kidder, G. M. & Naus, C. C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc. Natl Acad. Sci. USA 88, 1883–1887 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, S. C., Pelletier, D. B., Ao, P. & Boynton, A. L. Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ. 6, 681–690 (1995).

    CAS  PubMed  Google Scholar 

  52. Goldberg, G. S. et al. Connexin43 suppresses MFG-E8 while inducing contact growth inhibition of glioma cells. Cancer Res. 60, 6018–6026 (2000).

    CAS  PubMed  Google Scholar 

  53. Fujimoto, E. et al. Negative growth control of renal cell carcinoma cell by connexin 32: possible involvement of Her-2. Mol. Carcinog. 40, 135–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Mehta, P. P. et al. Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev. Genet. 24, 91–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Hirschi, K. K., Xu, C. E., Tsukamoto, T. & Sager, R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ. 7, 861–870 (1996).

    CAS  PubMed  Google Scholar 

  56. McLachlan, E., Shao, Q. & Laird, D. W. Connexins and gap junctions in mammary gland development and breast cancer progression. J. Membr. Biol. 218, 107–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Trosko, J. E., Chang, C. C., Upham, B. L. & Tai, M. H. Ignored hallmarks of carcinogenesis: stem cells and cell-cell communication. Ann. NY Acad. Sci. 1028, 192–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Graeber, S. H. & Hülser, D. F. Connexin transfection induces invasive properties in HeLa cells. Exp. Cell Res. 243, 142–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Ito, A. et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105, 1189–1197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin, J. H. et al. Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J. Neurosci. 22, 4302–4311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bates, D. C., Sin, W. C., Aftab, Q. & Naus, C. C. Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55, 1554–1564 (2007).

    Article  PubMed  Google Scholar 

  62. Ito, A. et al. Increased expression of connexin 26 in the invasive component of lung squamous cell carcinoma: significant correlation with poor prognosis. Cancer Lett. 234, 239–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Kanczuga-Koda, L. et al. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 59, 429–433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baklaushev, V. P. et al. Visualization of connexin 43-positive cells of glioma and the periglioma zone by means of intravenously injected monoclonal antibodies. Drug Deliv. 18, 331–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Han, Y. et al. Connexin43 expression increases in the epithelium and stroma along the colonic neoplastic progression pathway: implications for its oncogenic role. Gastroenterol. Res. Pract. 2011, 561719 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tang, B., Peng, Z. H., Yu, P. W., Yu, G. & Qian, F. Expression and significance of Cx43 and E-cadherin in gastric cancer and metastatic lymph nodes. Med. Oncol. 28, 502–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Naoi, Y. et al. Connexin26 expression is associated with lymphatic vessel invasion and poor prognosis in human breast cancer. Breast Cancer Res. Treat. 106, 11–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Lewalle, J. M., Cataldo, D., Bajou, K., Lambert, C. A. & Foidart, J. M. Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration. Clin. Exp. Metastasis 16, 21–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Elzarrad, M. K. et al. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med. 6, 20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pollmann, M.-A., Shao, Q., Laird, D. W. & Sandig, M. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res. 7, R522–R534 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Langley, R. R. & Fidler, I. J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28, 297–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Yano, T. et al. Connexin 32 as an anti-invasive and anti-metastatic gene in renal cell carcinoma. Biol. Pharm. Bull. 29, 1991–1994 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Sato, H. et al. The inhibitory effect of connexin 32 gene on metastasis in renal cell carcinoma. Mol. Carcinog. 47, 403–409 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Li, Z., Zhou, Z., Welch, D. R. & Donahue, H. J. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin. Exp. Metastasis 25, 893–901 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu, H. T. et al. Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem. Cytobiol. 46, 315–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Liang, Q. L., Wang, B. R., Chen, G. Q., Li, G. H. & Xu, Y. Y. Clinical significance of vascular endothelial growth factor and connexin43 for predicting pancreatic cancer clinicopathologic parameters. Med. Oncol. 27, 1164–1170 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Van der Aa, F., Roskams, T., Blyweert, W. & De Ridder, D. Interstitial cells in the human prostate: a new therapeutic target? Prostate 56, 250–255 (2003).

    Article  PubMed  Google Scholar 

  78. Dey, A., Kusljic, S., Lang, R. J. & Exintaris, B. Role of connexin 43 in the maintenance of spontaneous activity in the guinea pig prostate gland. Br. J. Pharmacol. 161, 1692–1707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bonkhoff, H. & Remberger, K. Morphogenetic aspects of normal and abnormal prostatic growth. Pathol. Res. Pract. 191, 833–835 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. El-Alfy, M., Pelletier, G., Hermo, L. S. & Labrie, F. Unique features of the basal cells of human prostate epithelium. Microsc. Res. Tech. 51, 436–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Kyprianou, N. & Isaacs, J. T. Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens. Endocrinology 123, 2124–2131 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Sar, M., Lubahn, D. B., French, F. S. & Wilson, E. M. Immunohistochemical localization of the androgen receptor in rat and human tissues. Endocrinology 127, 3180–3186 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Pointis, G., Fiorini, C., Defamie, N. & Segretain, D. Gap junctional communication in the male reproductive system. Biochim. Biophys. Acta 1719, 102–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Meda, P. et al. Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology 133, 2371–2378 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Habermann, H., Chang, W. Y., Birch, L., Mehta, P. & Prins, G. S. Developmental exposure to estrogens alters epithelial cell adhesion and gap junction proteins in the adult rat prostate. Endocrinology 142, 359–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Gemel, J., Valiunas, V., Brink, P. R. & Beyer, E. C. Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells. J. Cell Sci. 117, 2469–2480 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Huynh, H. T. et al. Regulation of the gap junction connexin 43 gene by androgens in the prostate. J. Mol. Endocrinol. 26, 1–10 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Prins, G. S. et al. Influence of neonatal estrogens on rat prostate development. Reprod. Fertil. Dev. 13, 241–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Mitra, S. et al. Androgen-regulated formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. Mol. Biol. Cell 17, 5400–5416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sottoriva, A., Sloot, P. M., Medema, J. P. & Vermeulen, L. Exploring cancer stem cell niche directed tumor growth. Cell Cycle 9, 1472–1479 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Cocciadiferro, L. et al. Profiling cancer stem cells in androgen-responsive and refractory human prostate tumor cell lines. Ann. NY Acad. Sci. 1155, 257–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Tsai, H. et al. Reduced connexin 43 expression in high grade, human prostatic adenocarcinoma cells. Biochem. Biophys. Res. Commun. 227, 64–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Benko, G. et al. Prognostic value of connexin43 expression in patients with clinically localized prostate cancer. Prostate Cancer Prostatic Dis. 14, 90–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Hernandez, M. et al. A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells. Prostate 66, 1151–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Chen, W. et al. ATRA enhances bystander effect of suicide gene therapy in the treatment of prostate cancer. Urol. Oncol. 26, 397–405 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Carruba, G. et al. Intercellular communication and human prostate carcinogenesis. Ann. NY Acad. Sci. 963, 156–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Carruba, G. et al. Regulation of cell-to-cell communication in non-tumorigenic and malignant human prostate epithelial cells. Prostate 50, 73–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Tanaka, M. & Grossman, H. B. Connexin 26 induces growth suppression, apoptosis and increased efficacy of doxorubicin in prostate cancer cells. Oncol. Rep. 11, 537–541 (2004).

    CAS  PubMed  Google Scholar 

  100. Mehta, P. P. et al. Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol. Carcinog. 15, 18–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Lamiche, C. et al. The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin. Exp. Metastasis 29, 111–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Szpak, K. et al. DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43. Cell. Mol. Biol. Lett. 16, 625–637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saladino, F. et al. Connexin expression in nonneoplastic human prostate epithelial cells. Ann. NY Acad. Sci. 963, 213–217 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Carter, H. B., Partin, A. W. & Coffey, D. S. Prediction of metastatic potential in an animal model of prostate cancer: flow cytometric quantification of cell surface charge. J. Urol. 142, 1338–1341 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. Miękus, K. & Madeja, Z. Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cell. Mol. Biol. Lett. 12, 348–361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Daniel-Wójcik, A. et al. Cell motility affects the intensity of gap junctional coupling in prostate carcinoma and melanoma cell populations. Int. J. Oncol. 33, 309–315 (2008).

    PubMed  Google Scholar 

  107. Olk, S., Zoidl, G. & Dermietzel, R. Connexins, cell motility, and the cytoskeleton. Cell. Motil. Cytoskeleton 66, 1000–1016 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Kandouz, M. & Batist, G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin. Ther. Targets 14, 681–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Clere, N., Faure, S., Martinez, M. C. & Andriantsitohaina, R. Anticancer properties of flavonoids: roles in various stages of carcinogenesis. Cardiovasc. Hematol. Agents Med. Chem. 9, 62–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Nishiumi, S. et al. Dietary flavonoids as cancer-preventive and therapeutic biofactors. Front. Biosci. (Schol. Ed.) 3, 1332–1362 (2011).

    Article  Google Scholar 

  111. Chaumontet, C. et al. Flavonoids (apigenin, tangeretin) counteract tumor promoter-induced inhibition of intercellular communication of rat liver epithelial cells. Cancer Lett. 114, 207–210 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Czyż, J., Irmer, U., Zappe, C., Mauz, M. & Hülser, D. F. Hierarchy of carcinoma cell responses to apigenin: gap junctional coupling versus proliferation. Oncol. Rep. 11, 739–744 (2004).

    PubMed  Google Scholar 

  113. Czyż, J., Madeja, Z., Irmer, U., Korohoda, W. & Hülser, D. F. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int. J. Cancer 114, 12–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. King, T. J. & Bertram, J. S. Connexins as targets for cancer chemoprevention and chemotherapy. Biochim. Biophys. Acta 1719, 146–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Conklin, C. M. et al. Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis 28, 93–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Czernik, M., Sroka, J., Madeja, Z. & Czyż, J. Apigenin inhibits growth and motility but increases gap junctional coupling intensity in rat prostate carcinoma (MAT-LyLu) cell populations. Cell. Mol. Biol. Lett. 13, 327–338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wertz, K., Siler, U. & Goralczyk, R. Lycopene: modes of action to promote prostate health. Arch. Biochem. Biophys. 430, 127–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Forbes, K., Gillette, K. & Sehgal, I. Lycopene increases urokinase receptor and fails to inhibit growth or connexin expression in a metastatically passaged prostate cancer cell line: a brief communication. Exp. Biol. Med. (Maywood) 228, 967–971 (2003).

    Article  CAS  Google Scholar 

  119. Gitenay, D. et al. Serum from rats fed red or yellow tomatoes induces Connexin43 expression independently from lycopene in a prostate cancer cell line. Biochem. Biophys. Res. Commun. 364, 578–582 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51, 1–28 (2004).

    Article  PubMed  Google Scholar 

  121. Hattori, Y. & Maitani, Y. Folate-linked nanoparticle-mediated suicide gene therapy in human prostate cancer and nasopharyngeal cancer with herpes simplex virus thymidine kinase. Cancer Gene Ther. 12, 796–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, M., Berthoud, V. M. & Beyer, E. C. Connexin43 increases the sensitivity of prostate cancer cells to TNFα-induced apoptosis. J. Cell Sci. 120, 320–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Govindarajan, R. et al. Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by α-catenin. J. Biol. Chem. 277, 50087–50097 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Fukushima, M., Hattori, Y., Yoshizawa, T. & Maitani, Y. Combination of non-viral connexin 43 gene therapy and docetaxel inhibits the growth of human prostate cancer in mice. Int. J. Oncol. 30, 225–231 (2007).

    CAS  PubMed  Google Scholar 

  125. Wybieralska, E. et al. Fenofibrate attenuates contact-stimulated cell motility and gap junctional coupling in DU-145 human prostate cancer cell populations. Oncol. Rep. 26, 447–453 (2011).

    CAS  PubMed  Google Scholar 

  126. Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. & Wells, A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. http://dx.doi.org/10.1007/s12307-011-0085-4.

  127. Kedrin, D., Wyckoff, J., Sahai, E., Condeelis, J. & Segall, J. E. Imaging tumor cell movement in vivo. Curr. Protoc. Cell Biol. 35, 19.7.1–19.7.17 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The current authors' research on the topics discussed in this review is supported by the Polish National Science Centre (grant 2011/01/B/NZ3/00004). The authors' research is also financed by Polish Ministry of Scientific Research and Higher Education, (N N302 061936 and N N301 050236) and the European Regional Development Fund within the Operational Programme Innovative Economy (grant UDA-POIG.01.03.01-14-036/09-00). The Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University is a beneficiary of structural funds from the European Union (grant POIG.02.01.00-12-064/08 and POIG 01.02-00-109/99).

Author information

Authors and Affiliations

Authors

Contributions

J. Czyż, K. Szpak and Z. Madeja researched data for this article. J. Czyż wrote the manuscript, K. Szpak designed the figures and all authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Jarosław Czyż.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czyż, J., Szpak, K. & Madeja, Z. The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 9, 274–282 (2012). https://doi.org/10.1038/nrurol.2012.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.14

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer