Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CT urography for hematuria

Abstract

Hematuria can signify serious disease such as bladder cancer, upper urinary tract urothelial cell carcinoma (UUT-UCC), renal cell cancer or urinary tract stones. CT urography is a rapidly evolving technique made possible by recent advances in CT technology. CT urography is defined as CT examination of the kidneys, ureters and bladder with at least one series of images acquired during the excretory phase after intravenous contrast administration. The reasoning for using CT urography to investigate hematuria is based on its high diagnostic accuracy for urothelial cell carcinoma (UCC) and favorable comparison with other imaging techniques. The optimum diagnostic imaging strategy for patients with hematuria at high-risk for UCC involves the use of CT urography as a replacement for other imaging tests (ultrasonography, intravenous urography, or retrograde ureteropyelography) and as a triage test for cystoscopy, resulting in earlier diagnosis and improved prognosis of bladder cancer, UUT-UCC, renal cell cancer and stones. Current problems with CT urography for investigating hematuria might be solved with a formative educational program simulating clinical reporting to reduce reader error, and a new technique for image-guided biopsy of UUT-UCC detected by CT urography for histopathological confirmation of diagnosis and elimination of false-positive results. CT urography is recommended as the initial imaging test for hematuria in patients at high-risk for UCC.

Key Points

  • Hematuria can signify serious disease such as bladder cancer, upper urinary tract urothelial cell cancer (UUT-UCC), renal cell cancer or urinary tract stones

  • Patients with hematuria can be divided into low-risk and high-risk groups for UUT-UCC based on risk factors such as patient age, visible hematuria, occupational exposure to toxins and other factors

  • CT urography is defined as CT examination of the kidneys, ureters and bladder with at least one series of images acquired during the excretory phase following intravenous contrast administration

  • Reasoning for the use of CT urography to investigate hematuria is based on its high diagnostic accuracy for UUT-UCC and favorable comparisons with other imaging techniques

  • CT urography is recommended as the initial imaging investigation for patients over 40 years old presenting with hematuria (UTI excluded), specifically those at high risk of urothelial cell carcinoma (UCC)

  • The optimum diagnostic imaging strategy for patients at high risk of UCC is to use CT urography as a replacement test for conventional upper tract imaging techniques and as a triage test for cystoscopy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging and biopsy of a large renal pelvic UUT-UCC.
Figure 2: Imaging and biopsy of urothelial cell carcinoma.
Figure 3: A summary of diagnostic strategies for investigating hematuria.

Similar content being viewed by others

References

  1. Sutton, J. M. Evaluation of haematuria in adults. JAMA 263, 2475–2480 (1990).

    Article  CAS  Google Scholar 

  2. Khadra, M. H., Pickard, R. S., Charlton, M., Powell, P. H. & Neal, D. E. A prospective analysis of 1,939 patients with hematuria to evaluate current diagnostic practice. J. Urol. 163, 524–527 (1999).

    Article  Google Scholar 

  3. Edwards, T. J., Dickinson, A. J., Natale, S., Gosling, J. & McGrath, J. S. A prospective analysis of the diagnostic yield resulting from the attendance of 4020 patients at a protocol-driven haematuria clinic. BJU Int. 97, 301–305 (2006).

    Article  Google Scholar 

  4. Kelly, J. D., Fawcett, D. P. & Goldberg, L. C. Assessment and management of non-visible haematuria in primary care. Br. Med. J. 338, a3021 (2009).

    Article  Google Scholar 

  5. Malmström, P.-U. Time to abandon testing for microscopic haematuria in adults? Br. Med. J. 326, 813–815 (2003).

    Article  Google Scholar 

  6. Rodgers, M. et al. Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation. Health Technol. Assess. 10, iii–iv, xi–259 (2006).

    Article  CAS  Google Scholar 

  7. Grossfeld, G. D. et al. Evaluation of asymptomatic microscopic hematuria in adults: The American Urological Association best practice policy-Part 1: definition, detection, prevalence, and etiology. Urology 57, 599–603 (2001).

    Article  CAS  Google Scholar 

  8. Grossfeld, G. D. et al. Evaluation of asymptomatic microscopic hematuria in adults: The American Urological Association Best Practice Policy-Part 11: patient evaluation, cytology, voided markers, imaging, cystoscopy, nephrology evaluation, and follow-up. Urology 57, 604–610 (2001).

    Article  CAS  Google Scholar 

  9. Webb, J. A. W. in European Uroradiology '94 (eds Dalla Palma, L. & Thomsen, H. S.) 36–39 (FADL, Copenhagen, 1994).

    Google Scholar 

  10. Webb, J. A. W. Imaging in haematuria. Clin. Radiol. 52, 167–171 (1997).

    Article  CAS  Google Scholar 

  11. Van Der Molen, A. et al. CT urography: definition, indications and techniques. A guideline for clinical practice. Eur. Radiol. 18, 4–17 (2008).

    Article  Google Scholar 

  12. Mahesh, M. MDCT Physics: The Basics—Technology, Image Quality and Radiation Dose 5–16 (Lippincott Williams & Wilkins, Philadelphia, 2009).

    Google Scholar 

  13. Mahesh, M. MDCT Physics: The Basics—Technology, Image Quality and Radiation Dose 17–35 (Lippincott Williams & Wilkins, Philadelphia, 2009).

    Google Scholar 

  14. Smith, R. C. et al. Acute flank pain: comparison of noncontrast enhanced CT and intravenous urography. Radiology 194, 789–794 (1995).

    Article  CAS  Google Scholar 

  15. Smith, R. C., Verga, M., McCarthy, S. & Rosenfield, A. T. Diagnosis of acute flank pain: value of unenhanced helical CT. AJR Am. J. Roentgenol. 166, 97–101 (1996).

    Article  CAS  Google Scholar 

  16. Sourtzis, S. et al. Radiologic investigation of renal colic: unenhanced helical CT compared with excretory urography. AJR Am. J. Roentgenol. 172, 1491–1494 (1999).

    Article  CAS  Google Scholar 

  17. Fielding, J. R., Silverman, S. G., Samuel, S., Zou, K. H. & Loughlin, K. R. Unenhanced helical CT of ureteral stones: a replacement for excretory urography in planning treatment. AJR Am. J. Roentgenol. 171, 1051–1053 (1998).

    Article  CAS  Google Scholar 

  18. Bosniak, M. A. The small (less than or equal to 3.0 cm) renal parenchymal tumor: detection, diagnosis, and controversies. Radiology 179, 307–317 (1991).

    Article  CAS  Google Scholar 

  19. Silverman, S. G. et al. Small (< or = 3 cm) renal masses: correlation of spiral CT features and pathologic findings. AJR Am. J. Roentgenol. 163, 597–605 (1994).

    Article  CAS  Google Scholar 

  20. Zagoria, R. J. Imaging of small renal masses. AJR Am. J. Roentgenol. 175, 945–955 (2000).

    Article  CAS  Google Scholar 

  21. Warshauer, D. M. et al. Detection of renal masses: sensitivities and specificities of excretory urography / linear tomography, US, and CT. Radiology 169, 363–365 (1988).

    Article  CAS  Google Scholar 

  22. Caoili, E. M. et al. Urinary tract abnormalities: initial experience with multi-detector row CT urography. Radiology 222, 353–360 (2002).

    Article  Google Scholar 

  23. Chow, L. C. & Sommer, F. G. Multidetector CT urography with abdominal compression and three-dimensional reconstruction. AJR Am. J. Roentgenol. 177, 849–855 (2001).

    Article  CAS  Google Scholar 

  24. Kawashima, A. et al. CT urography. RadioGraphics 24, 235–254 (2004).

    Google Scholar 

  25. Anderson, E. M., Murphy, R. M., Rennie, A. T. M. & Cowan, N. C. Multidetector computed tomography urography (MDCTU) for diagnosing urothelial malignancy. Clin. Radiol. 62, 324–332 (2006).

    Article  Google Scholar 

  26. Nolte-Ernsting, C. & Cowan, N. Understanding multi-slice CT urography techniques: many roads lead to Rome. Eur. Radiol. 16, 2670–2686 (2006).

    Article  Google Scholar 

  27. Dillman, J. R., Caoili, E. M. & Cohan, R. H. Multi-detector CT urography: a one-stop renal and urinary tract imaging modality. Abdom. Imaging 32, 519–529 (2007).

    Article  Google Scholar 

  28. Silverman, S. G., Lyendecker, J. R. & Amis, E. S. What is the current role of CT urography and MR urography in the evaluation of the urinary tract? Radiology 250, 309–323 (2009).

    Article  Google Scholar 

  29. Weinstein, S., Obuchowski, N. A. & Lieber, M. L. Clinical evaluation of diagnostic tests. AJR Am. J. Roentgenol. 184, 14–19 (2005).

    Article  Google Scholar 

  30. Stacul, F. et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur. Radiol. 21, 2527–2541 (2011).

    Article  Google Scholar 

  31. Cowan, N. C., Turney, B. W., Taylor, N. J., McCarthy, C. L. & Crew, J. P. Multidetector computed tomography urography (MDCTU) for diagnosing upper urinary tract tumour. BJU Int. 99, 1363–1370 (2007).

    Article  Google Scholar 

  32. Turney, B. W., Willatt, J. M. C., Nixon, D., Crew, J. P. & Cowan, N. C. Computed tomography urography for diagnosing bladder cancer. BJU Int. 98, 345–348 (2006).

    Article  Google Scholar 

  33. Knox, M. K., Rivers-Bowerman, M. D., Bardgett, H. P. & Cowan, N. C. Multidetector computed tomography with triple-bolus contrast medium administration protocol for preoperative anatomical and functional assessment of potential living renal donors. Eur. Radiol. 20, 2590–2599 (2010).

    Article  Google Scholar 

  34. Kekelidze, M. et al. Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop--protocol design, opacification, and image quality analysis. Radiology 255, 508–516 (2010).

    Article  Google Scholar 

  35. Lang, E. K. et al. Computerized tomography tailored for the assessment of microscopic hematuria. J. Urol. 167, 547–554 (2002).

    Article  Google Scholar 

  36. Gray Sears, C. et al. Prospective comparison of computerized tomography and excretory urography in the initial evaluation of asymptomatic microhematuria. J. Urol. 168, 2457–2460 (2003).

    Article  Google Scholar 

  37. O'Malley, M. E. et al. Comparision of excretory phase, helical computed tomography with intravenous urography in patients with painless haematuria. Clin. Radiol. 58, 294–300 (2003).

    Article  CAS  Google Scholar 

  38. Albani, J. M., Ciaschini, M. W., Streem, S. B., Herts, B. R. & Angermeier, K. W. The role of computerized tomographic urography in the initial evaluation of hematuria. J. Urol. 177, 644–648 (2007).

    Article  Google Scholar 

  39. Wang, L. J. et al. Multidetector computerized tomography urography is more accurate than excretory urography for diagnosing transitional cell carcinoma of the upper urinary tract in adults with hematuria. J. Urol. 183, 48–55 (2010).

    Article  Google Scholar 

  40. Jinzaki, M. et al. Comparison of CT urography and excretory urography in the detection and localization of urothelial carcinoma of the upper urinary tract. AJR Am. J. Roentgenol. 196, 1102–1109 (2011).

    Article  Google Scholar 

  41. Fritz, G. A., Schoellnast, H., Deutschmann, H. A., Quehenberger, F. & Tillich, M. Multiphasic multidetector-row CT (MDCT) in detection and staging of transitional cell carcinomas of the upper urinary tract. Eur. Radiol. 16, 1244–1252 (2006).

    Article  Google Scholar 

  42. Chow, L. C., Kwan, S. W., Olcott, E. W. & Sommer, G. Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. AJR Am. J. Roentgenol. 189, 314–322 (2007).

    Article  Google Scholar 

  43. Sudakoff, G. S. et al. Multidetector computerized tomography urography as the primary imaging modality for detecting urinary tract neoplasms in patients with asymptomatic hematuria. J. Urol. 179, 862–867 (2008).

    Article  Google Scholar 

  44. Wang, L. J., Wong, Y. C., Chuang, C. K., Huang, C. C. & Pang, S. T. Diagnostic accuracy of transitional cell carcinoma on multidetector computerized tomography urography in patients with gross hematuria. J. Urol. 181, 524–531 (2009).

    Article  Google Scholar 

  45. Maheshwari, E., O'Malley, M. E., Ghai, S., Staunton, M. & Massey, C. Split-bolus MDCT urography: upper tract opacification and performance for upper tract tumors in patients with hematuria. AJR Am. J. Roentgenol. 194, 453–458 (2010).

    Article  Google Scholar 

  46. Cowan, N. C., Mallett, S. & Crew, J. P. Justification for using CT urography as the first-line diagnostic imaging test for investigating hematuria in patiets at high risk of upper urinary tract cancer. Presented at the 36th Scientific Assembly of the Society of Uroradiology.

  47. Blick, C. G. et al. Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic. BJU Int. http://dx.doi.org/10.1111/j.1464-410X.2011.10664.x.

  48. Tomson, C. & Porter, T. Asymptomatic microscopic or dipstick haematuria in adults: which investigations for which patients? A review of the evidence. BJU Int. 90, 185–198 (2002).

    Article  CAS  Google Scholar 

  49. Stenzl, A. et al. The Updated EAU Guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol. 55, 815–819 (2009).

    Article  Google Scholar 

  50. Cohan, R. H., Caoili, E. M., Cowan, N. C., Weizer, A. Z. & Ellis, J. H. MDCT urography: exploring a new paradigm for imaging of bladder cancer. AJR Am. J. Roentgenol. 192, 1501–1508 (2009).

    Article  Google Scholar 

  51. Sadow, C. A., Silverman, S. G., O'Leary, M. P. & Signorovitch, J. E. Bladder cancer detection with CT urography in an academic medical center. Radiology 249, 195–202 (2008).

    Article  Google Scholar 

  52. Dachman, A. H. et al. Formative evaluation of standardized training for CT colonographic image interpretation by novice readers. Radiology 249, 167–177 (2008).

    Article  Google Scholar 

  53. Soto, J. A., Barish, M. A. & Yee, J. Reader training in CT colonography: how much is enough? Radiology 237, 26–27 (2005).

    Article  Google Scholar 

  54. Roupret, M. et al. European guidelines for the diagnosis and management of upper urinary tract urothelial cell carcinomas: 2011 update. Eur. Urol. 59, 584–594 (2011).

    Article  Google Scholar 

  55. Hendee, W. R. et al. Addressing overutilization in medical imaging. Radiology 257, 240–245 (2010).

    Article  Google Scholar 

  56. Vrtiska, T. J. et al. Spatial resolution and radiation dose of a 64-MDCT scanner compared with published CT urography protocols. AJR Am. J. Roentgenol. 192, 941–948 (2009).

    Article  Google Scholar 

  57. Toth, T. & Hsieh, J. in MDCT Physics The Basics—Technology, Image Quality and Radiation Dose (ed. Mahesh, M.) 115–143 (Lippincott Williams & Wilkins, Philadelphia, 2009).

    Google Scholar 

  58. Nolte-Ernsting, C. C., Staatz, G., Tacke, J. & Gunther, R. W. MR urography today. Abdom. Imaging 28, 191–209 (2003).

    Article  CAS  Google Scholar 

  59. Leyendecker, J. R., Barnes, C. E. & Zagoria, R. J. MR urography: techniques and clinical applications. RadioGraphics 28, 23–46 (2008).

    Article  Google Scholar 

  60. Takahashi, N. et al. Small (<2-cm) upper-tract urothelial carcinoma: evaluation with gadolinium-enhanced three-dimensional spoiled gradient-recalled echo MR urography. Radiology 247, 451–457 (2008).

    Article  Google Scholar 

  61. Coursey, C. et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? RadioGraphics 30, 1037–1055 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Text

CT urography single bolus protocol for hematuria (DOC 25 kb)

Supplementary Table 1

CT urography single bolus protocol for hematuria GE LightSpeed VCT 64 (DOC 37 kb)

Supplementary Table 2

CT urography single bolus protocol for hematuria Siemens SOMATOM Sensation 16 (DOC 41 kb)

Supplementary Table 3

CT urography acquisition and reconstruction parameters for GE X4 - 16 CT machines. (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, N. CT urography for hematuria. Nat Rev Urol 9, 218–226 (2012). https://doi.org/10.1038/nrurol.2012.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing