Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reducing infection rates after prostate biopsy

Subjects

Key Points

  • Rates of infectious complications after transrectal prostate biopsies have increased over the past 15 years

  • The predominant risk factor for postbiopsy infection seems to be exposure to faecal fluoroquinolone-resistant bacteria

  • Every patient should undergo a preoperative assessment, including history of fluoroquinolone intake over the past 6 months, and a urine culture

  • Choice of empirical antibiotic prophylaxis should take regional resistance rates into consideration, as well as the pharmacokinetic and pharmacodynamic characteristics of each antibiotic

  • Novel strategies to reduce rates of infectious complications after transrectal prostate biopsies include targeted prophylaxis after sampling of the rectal flora, bowel preparation, and perineal prostate biopsy

Abstract

Over the years, prostate biopsy has become the gold-standard technique for diagnosing prostate carcinoma. Worldwide, several million prostate biopsies are performed every year, most commonly using the transrectal approach. Preoperative antibiotic prophylaxis with fluoroquinolones has been shown to be effective for reducing infection rates. However, in recent years, an increase in febrile infection rates after transrectal prostate biopsy (from 1% to 4%) has been reported in retrospective and prospective studies. The predominant risk factor for infection seems to be the presence of fluoroquinolone-resistant bacteria in faeces. Patients at risk of fluoroquinolone resistance should receive carefully selected antibiotics at sufficient concentrations to be effective. Targeted prophylaxis after rectal flora swabbing has been shown to be efficacious compared with empirical antibiotic prophylaxis. Several forms of bowel preparations are under investigation, although none have yet been shown to significantly reduce infection rates. Perineal prostate biopsy is currently being evaluated as a strategy for preventing the inoculation of rectal flora, but limited data support this approach at present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for reducing rates of infectious complications when performing transrectal prostate biopsy.

Similar content being viewed by others

References

  1. Zani, E. L., Clark, O. A. & Rodrigues Netto, N. Jr. Antibiotic prophylaxis for transrectal prostate biopsy. Cochrane Database of Systematic Reviews, Issue 5. Art. No.: CD006576. http://dx.doi.org/10.1002/14651858.CD006576.pub2 (2011).

  2. Carmignani, L. et al. Bacterial sepsis following prostatic biopsy. Int. Urol. Nephrol. 44, 1055–1063 (2012).

    Article  Google Scholar 

  3. Liss, M. A. et al. Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. J. Urol. 185, 1283–1288 (2011).

    Article  Google Scholar 

  4. Loeb, S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Complications after prostate biopsy: data from SEER-Medicare. J. Urol. 186, 1830–1834 (2011).

    Article  Google Scholar 

  5. Loeb, S. et al. Infectious complications and hospital admissions after prostate biopsy in a European randomized trial. Eur. Urol. 61, 1110–1114 (2012).

    Article  Google Scholar 

  6. Nam, R. K. et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J. Urol. 183, 963–968 (2010).

    Article  Google Scholar 

  7. Grabe, M. et al. Preoperative assessment of the patient and risk factors for infectious complications and tentative classification of surgical field contamination of urological procedures. World J. Urol. 30, 39–50 (2012).

    Article  Google Scholar 

  8. Lindstedt, S., Lindstrom, U., Ljunggren, E., Wullt, B. & Grabe, M. Single-dose antibiotic prophylaxis in core prostate biopsy: Impact of timing and identification of risk factors. Eur. Urol. 50, 832–837 (2006).

    Article  Google Scholar 

  9. Loeb, S. Infection after transrectal ultrasonography-guided prostate biopsy: increased relative risks after recent international travel or antibiotic use. BJU Int. 109, 1785–1786 (2012).

    Article  Google Scholar 

  10. Loeb, S. et al. Systematic review of complications of prostate biopsy. Eur. Urol. 64, 876–892 (2013).

    Article  Google Scholar 

  11. Simsir, A., Kismali, E., Mammadov, R., Gunaydin, G. & Cal, C. Is it possible to predict sepsis, the most serious complication in prostate biopsy? Urol. Int. 84, 395–399 (2010).

    Article  Google Scholar 

  12. Wagenlehner, F. M. et al. Infective complications after prostate biopsy: outcome of the global prevalence study of infections in urology (GPIU) 2010 and 2011; a prospective multinational multicentre prostate biopsy study. Eur. Urol. 63, 521–527 (2013).

    Article  Google Scholar 

  13. Loeb, S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Is repeat prostate biopsy associated with a greater risk of hospitalization? Data from SEER-Medicare. J. Urol. 189, 867–870 (2013).

    Article  Google Scholar 

  14. Nam, R. K. et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J. Urol. 189, S12–S18 (2013).

    Article  Google Scholar 

  15. Mouraviev, V. et al. The feasibility of multiparametric magnetic resonance imaging for targeted biopsy using novel navigation systems to detect early stage prostate cancer: the preliminary experience. J. Endourol. 27, 820–825 (2013).

    Article  Google Scholar 

  16. Pepe, P. & Aragona, F. Morbidity after transperineal prostate biopsy in 3,000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 81, 1142–1146 (2013).

    Article  Google Scholar 

  17. Batura, D. & Gopal Rao, G. The national burden of infections after prostate biopsy in England and Wales: a wake-up call for better prevention. J. Antimicrob. Chemother. 68, 247–249 (2013).

    Article  CAS  Google Scholar 

  18. Heidenreich, A. et al. EAU Guidelines on Prostate Cancer. Part II: Treatment of Advanced, Relapsing, and Castration-Resistant Prostate Cancer. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2013.11.002

  19. Wirth, M. P. et al. Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms: AWMF-Register-Nummer (043–022OL) Version 2.0 – 1. Aktualisierung 2011 [online], (2011).

  20. Scardino, P. T. The responsible use of antibiotics for an elevated PSA level. Nat. Clin. Pract. Urol. 4, 1 (2007).

    Article  Google Scholar 

  21. Ballentine Carter, H. et al. Early detection of prostate cancer: AUA guideline. J. Urol. 190, 419–426 (2013).

    Article  Google Scholar 

  22. Carignan, A. et al. Increasing risk of infectious complications after transrectal ultrasound-guided prostate biopsies: time to reassess antimicrobial prophylaxis? Eur. Urol. 62, 453–459 (2012).

    Article  Google Scholar 

  23. Williamson, D. A. et al. Escherichia coli bloodstream infection after transrectal ultrasound-guided prostate biopsy: implications of fluoroquinolone-resistant sequence type 131 as a major causative pathogen. Clin. Infect. Dis. 54, 1406–1412 (2012).

    Article  CAS  Google Scholar 

  24. Steensels, D. et al. Fluoroquinolone-resistant E. coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy--should we reassess our practices for antibiotic prophylaxis? Clin. Microbiol. Infect. 18, 575–581 (2012).

    Article  CAS  Google Scholar 

  25. Patel, U. et al. Infection after transrectal ultrasonography-guided prostate biopsy: increased relative risks after recent international travel or antibiotic use. BJU Int. 109, 1781–1785 (2011).

    Article  Google Scholar 

  26. Williamson, D. A., Masters, J., Freeman, J. & Roberts, S. Travel-associated extended-spectrum β-lactamase-producing Escherichia coli bloodstream infection following transrectal ultrasound-guided prostate biopsy. BJU Int. 109, E21–E22 (2012).

    Article  Google Scholar 

  27. Zaytoun, O. M. et al. Emergence of fluoroquinolone-resistant Escherichia coli as cause of postprostate biopsy infection: implications for prophylaxis and treatment. Urology 77, 1035–1041 (2011).

    Article  Google Scholar 

  28. Grabe, M. et al. Guidelines on urological infections: European Association of Urology Guidelines 224–241 (European Association of Urology, Arnhem, 2013).

    Google Scholar 

  29. Gonzalez, C. M. et al. AUA/SUNA white paper on the incidence, prevention and treatment of complications related to prostate needle biopsy. AUA [online], (2013).

  30. Laupland, K. B., Gregson, D. B., Church, D. L., Ross, T. & Pitout, J. D. Incidence, risk factors and outcomes of Escherichia coli bloodstream infections in a large Canadian region. Clin. Microbiol. Infect. 14, 1041–1047 (2008).

    Article  CAS  Google Scholar 

  31. Puig, J. et al. Transrectal ultrasound-guided prostate biopsy: is antibiotic prophylaxis necessary? Eur. Radiol. 16, 939–943 (2006).

    Article  Google Scholar 

  32. Bootsma, A. M., Laguna Pes, M. P., Geerlings, S. E. & Goossens, A. Antibiotic prophylaxis in urologic procedures: a systematic review. Eur. Urol. 54, 1270–1286 (2008).

    Article  Google Scholar 

  33. Wagenlehner, F. M. et al. [Antibiotic prophylaxis in urology]. Urologe A 50, 1469–1480 (2011).

    Article  CAS  Google Scholar 

  34. European Centre for Disease Prevention and Control (ECDC). Proportion of aminopenicillins resistant (R+I) enterococcus faecalis isolates in participating countries in 2012. ECDC [online], (2011).

  35. Al-Hasan, M. N., Lahr, B. D., Eckel-Passow, J. E. & Baddour, L. M. Antimicrobial resistance trends of Escherichia coli bloodstream isolates: a population-based study, 1998–2007. J. Antimicrob. Chemother. 64, 169–174 (2009).

    Article  CAS  Google Scholar 

  36. Tandogdu, Z. et al. Resistance patterns of nosocomial urinary tract infections in urology departments: 8-year results of the global prevalence of infections in urology study. World J. Urol. http://dx.doi.org/10.1007/s00345-013-1154-8

  37. European Centre for Disease Prevention and Control (ECDC). ECDC Risk assessment on the spread of carbapenemase-producing Enterobacteriaceae (CPE) through patient transfer between healthcare facilities, with special emphasis on cross-border transfer. ECDC [online], (2011).

  38. Qi, C. et al. Characterization of ciprofloxacin-resistant escherichia coli isolates among men undergoing evaluation for transrectal ultrasound-guided prostate biopsy: prevalence, clonality, and mechanisms of antimicrobial resistance. J. Urol. 190, 2026–2032 (2013).

    Article  CAS  Google Scholar 

  39. Roach, M. B., Figueroa, T. E., McBride, D., George, W. J. & Neal, D. E. Jr. Ciprofloxacin versus gentamicin in prophylaxis against bacteraemia in transrectal prostate needle biopsy. Urology 38, 84–87 (1991).

    Article  CAS  Google Scholar 

  40. Kataoka, N. [Concentration of antimicrobial agents in male genital organs]. Hinyokika Kiyo 29, 1219–1230 (1983).

    CAS  PubMed  Google Scholar 

  41. Wagenlehner, F. M., Weidner, W., Sorgel, F. & Naber, K. G. The role of antibiotics in chronic bacterial prostatitis. Int. J. Antimicrob. Agents 26, 1–7 (2005).

    Article  CAS  Google Scholar 

  42. Barza, M. & Cuchural, G. The penetration of antibiotics into the prostate in chronic bacterial prostatitis. Eur. J. Clin. Microbiol. 3, 503–505 (1984).

    Article  CAS  Google Scholar 

  43. Naber, K. G. & Sorgel, F. Antibiotic therapy—rationale and evidence for optimal drug concentrations in prostatic and seminal fluid and in prostatic tissue. Andrologia 35, 331–335 (2003).

    Article  CAS  Google Scholar 

  44. Goto, T. et al. Diffusion of piperacillin, cefotiam, minocycline, amikacin and ofloxacin into the prostate. Int. J. Urol. 5, 243–246 (1998).

    Article  CAS  Google Scholar 

  45. Naber, K. G. et al. Concentrations of cefpodoxime in plasma, ejaculate and in prostatic fluid and adenoma tissue. Infection 19, 30–35 (1991).

    Article  CAS  Google Scholar 

  46. Nishikawa, G. et al. Prostatic penetration of meropenem in humans, and dosage considerations for prostatitis based on a site-specific pharmacokinetic/pharmacodynamic evaluation. Int. J. Antimicrob. Agents 41, 267–271 (2013).

    Article  CAS  Google Scholar 

  47. Nakamura, K. et al. Determination of doripenem penetration into human prostate tissue and assessment of dosing regimens for prostatitis based on site-specific pharmacokinetic-pharmacodynamic evaluation. J. Chemother. 24, 32–37 (2012).

    Article  CAS  Google Scholar 

  48. Wright, W. L., Larking, P. & Lovell-Smith, C. J. Concentrations of trimethoprim and sulphamethoxazole in the human prostate gland after intramuscular injection. Br. J. Urol. 54, 550–551 (1982).

    Article  CAS  Google Scholar 

  49. Naber, K. G., Roscher, K., Botto, H. & Schaefer, V. Oral levofloxacin 500 mg once daily in the treatment of chronic bacterial prostatitis. Int. J. Antimicrob. Agents 32, 145–153 (2008).

    Article  CAS  Google Scholar 

  50. Ongun, S., Aslan, G. & Avkan-Oguz, V. The effectiveness of single-dose fosfomycin as antimicrobial prophylaxis for patients undergoing transrectal ultrasound-guided biopsy of the prostate. Urol. Int. 89, 439–444 (2012).

    Article  Google Scholar 

  51. Wagenlehner, F., Stower-Hoffmann, J., Schneider-Brachert, W., Naber, K. G. & Lehn, N. Influence of a prophylactic single dose of ciprofloxacin on the level of resistance of Escherichia coli to fluoroquinolones in urology. Int. J. Antimicrob. Agents 15, 207–211 (2000).

    Article  CAS  Google Scholar 

  52. Taylor, A. K. et al. Targeted antimicrobial prophylaxis using rectal swab cultures in men undergoing transrectal ultrasound guided prostate biopsy is associated with reduced incidence of postoperative infectious complications and cost of care. J. Urol. 187, 1275–1279 (2012).

    Article  CAS  Google Scholar 

  53. Jeon, S. S., Woo, S. H., Hyun, J. H., Choi, H. Y. & Chai, S. E. Bisacodyl rectal preparation can decrease infectious complications of transrectal ultrasound-guided prostate biopsy. Urology 62, 461–466 (2003).

    Article  Google Scholar 

  54. Abughosh, Z. et al. A prospective randomized trial of povidone-iodine prophylactic cleansing of the rectum before transrectal ultrasound guided prostate biopsy. J. Urol. 189, 1326–1331 (2012).

    Article  Google Scholar 

  55. Issa, M. M. et al. Formalin disinfection of biopsy needle minimizes the risk of sepsis following prostate biopsy. J. Urol. 190, 1769–1775 (2013).

    Article  Google Scholar 

  56. Hara, R. et al. Optimal approach for prostate cancer detection as initial biopsy: prospective randomized study comparing transperineal versus transrectal systematic 12-core biopsy. Urology 71, 191–195 (2008).

    Article  Google Scholar 

  57. Miller, J., Perumalla, C. & Heap, G. Complications of transrectal versus transperineal prostate biopsy. ANZ J. Surg. 75, 48–50 (2005).

    Article  Google Scholar 

  58. Shen, P. F. et al. The results of transperineal versus transrectal prostate biopsy: a systematic review and meta-analysis. Asian J. Androl. 14, 310–315 (2012).

    Article  Google Scholar 

  59. Dellinger, R. P. et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 41, 580–637 (2013).

    Article  Google Scholar 

  60. Elhanan, G., Sarhat, M. & Raz, R. Empiric antibiotic treatment and the misuse of culture results and antibiotic sensitivities in patients with community-acquired bacteraemia due to urinary tract infection. J. Infect. 35, 283–288 (1997).

    Article  CAS  Google Scholar 

  61. Dellinger, R. P. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39, 165–228 (2013).

    Article  CAS  Google Scholar 

  62. Wagenlehner, F. M. et al. Diagnosis and management for urosepsis. Int. J. Urol. 20, 963–970 (2013).

    PubMed  Google Scholar 

  63. Perletti, G., Marras, E., Wagenlehner, F. M. & Magri, V. Antimicrobial therapy for chronic bacterial prostatitis. Cochrane Database of Systematic Reviews, Issue 8. Art. No.: CD009071. http://dx.doi.org/10.1002/14651858.CD009071.pub2 (2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. M. E. Wagenlehner researched, wrote, edited, and discussed this article with colleagues. A. Pilatz researched the literature and reviewed the manuscript before submission. P. Waliszewski, W. Weidner, and T. E. Bjerklund Johansen reviewed the article and made substantial contributions towards discussions of content.

Corresponding author

Correspondence to Florian M. E. Wagenlehner.

Ethics declarations

Competing interests

F. M. E. Wagenlehner has served as a paid consultant for Astellas, AstraZeneca, Bionorica, Cernelle, Cubist, OM-Pharma, Lilly Pharma, Pierre Fabre, and Rosen-Pharma. He has received lecture honoraria from AstraZeneca, Bionorica, OM-Pharma, Pierre Fabre, Rosen Pharma, and Serag Wiessner. He has been paid for performing clinical trials on behalf of Astellas, AstraZeneca, Calixa, Cerexa, Cernelle, Cubist, GSK, Merlion, OM-Pharma, Janssen-Cilag, Johnson & Johnson, Lilly Pharma, Pharmacia, Pierre-Fabre, Rosen Pharma, Sanofi-Aventis, Strathmann, and Zambon. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagenlehner, F., Pilatz, A., Waliszewski, P. et al. Reducing infection rates after prostate biopsy. Nat Rev Urol 11, 80–86 (2014). https://doi.org/10.1038/nrurol.2013.322

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing