Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell-based secondary prevention of childbirth-induced pelvic floor trauma

Key Points

  • The aetiology and pathophysiology of pelvic-floor dysfunction (PFD) is incompletely understood, although pregnancy, and vaginal birth in particular, cause damage that seems to be insufficiently repaired in some women

  • After nerve and muscle trauma, endogenous repair processes are initiated, but these mechanisms often fail to completely repair the original damage

  • Administration of exogenous drugs, growth factors, cells or even tissue might improve the function of innate repair mechanisms

  • In small-animal models of PFD, the concept of administration of mesenchymal stem cells or factors secreted by these cells has positive effects on pelvic-floor function

  • Clinical trials in patients with either urinary incontinence or faecal incontinence have provided both subjective improvements and objective documentation of improved pelvic floor function after autologous mesenchymal stem cell administration

  • Intuitively, better outcomes seem likely when stem cells are given around the trauma period, before trauma-induced damage becomes a clinical reality; preclinical data are required to support this hypothesis

Abstract

With advancing population age, pelvic-floor dysfunction (PFD) will affect an increasing number of women. Many of these women wish to maintain active lifestyles, indicating an urgent need for effective strategies to treat or, preferably, prevent the occurrence of PFD. Childbirth and pregnancy have both long been recognized as crucial contributing factors in the pathophysiology of PFD. Vaginal delivery of a child is a serious traumatic event, causing anatomical and functional changes in the pelvic floor. Similar changes to those experienced during childbirth can be found in symptomatic women, often many years after delivery. Thus, women with such PFD symptoms might have incompletely recovered from the trauma caused by vaginal delivery. This hypothesis creates the possibility that preventive measures can be initiated around the time of delivery. Secondary prevention has been shown to be beneficial in patients with many other chronic conditions. The current general consensus is that clinicians should aim to minimize the extent of damage during delivery, and aim to optimize healing processes after delivery, therefore preventing later dysfunction. A substantial amount of research investigating the potential of stem-cell injections as a therapeutic strategy for achieving this purpose is currently ongoing. Data from small animal models have demonstrated positive effects of mesenchymal stem-cell injections on the healing process following simulated vaginal birth injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A generalized time course of changes in myeloid cell populations and in the expression of muscle-specific transcription factors, enzymes, and structural proteins in muscle following acute muscle injury.
Figure 2: Cellular responses to peripheral nerve injury.
Figure 3: Simplified representation of the interactions between mesenchymal stem cells, the immune system and regenerating muscle.

Similar content being viewed by others

References

  1. DeLancey, J. O. The hidden epidemic of pelvic floor dysfunction: achievable goals for improved prevention and treatment. Am. J. Obstet. Gynecol. 192, 1488–1495 (2005).

    Article  PubMed  Google Scholar 

  2. Glazener, C. M. A. et al. Conservative management of persistent postnatal urinary and faecal incontinence: randomised controlled trial. BMJ 323, 593–596 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. MacArthur, C. et al. Persistent urinary incontinence and delivery mode history: a six-year longitudinal study. BJOG 113, 218–224 (2006).

    Article  PubMed  Google Scholar 

  4. MacArthur, C. et al. Urinary incontinence persisting after childbirth: extent, delivery history, and effects in a 12-year longitudinal cohort study. BJOG 123, 1022–1029 (2015).

    Article  PubMed  Google Scholar 

  5. MacArthur, C. et al. Obstetric practice and faecal incontinence three months after delivery. BJOG 108, 678–683 (2001).

    CAS  PubMed  Google Scholar 

  6. Macarthur, C. et al. Faecal incontinence and mode of first and subsequent delivery: a six-year longitudinal study. BJOG 112, 1075–1082 (2005).

    Article  PubMed  Google Scholar 

  7. Macarthur, C. et al. Faecal incontinence persisting after childbirth: a 12 year longitudinal study. BJOG 120, 169–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Gutman, R. E. et al. Is there a pelvic organ prolapse threshold that predicts pelvic floor symptoms? Am. J. Obstet. Gynecol. 199, 683.e1–683.e7 (2008).

    Article  Google Scholar 

  9. MacArthur, C. et al. Exclusive caesarean section delivery and subsequent urinary and faecal incontinence: a 12-year longitudinal study. BJOG 118, 1001–1007 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Glazener, C. et al. Childbirth and prolapse: long-term associations with the symptoms and objective measurement of pelvic organ prolapse. BJOG 120, 161–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Gyhagen, M. et al. The prevalence of urinary incontinence 20 years after childbirth: a national cohort study in singleton primiparae after vaginal or caesarean delivery. BJOG 120, 144–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Gyhagen, M. et al. Faecal incontinence 20 years after one birth: a comparison between vaginal delivery and caesarean section. Int. Urogynecol. J. 25, 1411–1418 (2014).

    Article  PubMed  Google Scholar 

  13. Gyhagen, M. et al. Prevalence and risk factors for pelvic organ prolapse 20 years after childbirth: a national cohort study in singleton primiparae after vaginal or caesarean delivery. BJOG 120, 152–160 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Gyhagen, M., Akervall, S. & Milsom, I. Clustering of pelvic floor disorders 20 years after one vaginal or one cesarean birth. Int. Urogynecol. J. 26, 1115–1121 (2015).

    Article  PubMed  Google Scholar 

  15. Gainey, H. Post-partum observation of pelvic tissue damage. Am. J. Obstet. Gynecol. 46, 457–466 (1943).

    Article  Google Scholar 

  16. Gainey, H. L. Postpartum observation of pelvic tissue damage: further studies. Am. J. Obstet. Gynecol. 70, 800–807 (1955).

    Article  CAS  PubMed  Google Scholar 

  17. Miller, J. M. et al. Evaluating maternal recovery from labor and delivery: bone and levator ani injuries. Am. J. Obstet. Gynecol. 213, 188.e1–188.e11 (2015).

    Article  Google Scholar 

  18. Chan, S. S. et al. Prevalence of levator ani muscle injury in Chinese women after first delivery. Ultrasound Obstet. Gynecol. 39, 704–709 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. DeLancey, J. O. et al. The appearance of levator ani muscle abnormalities in magnetic resonance images after vaginal delivery. Obstet. Gynecol. 101, 46–53 (2003).

    PubMed  PubMed Central  Google Scholar 

  20. Dietz, H. P. & Wilson, P. D. Childbirth and pelvic floor trauma. Best Pract. Res. Clin. Obstet. Gynaecol. 19, 913–924 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Krofta, L. et al. Pubococcygeus-puborectalis trauma after forceps delivery: evaluation of the levator ani muscle with 3D/4D ultrasound. Int. Urogynecol. J. Pelvic Floor Dysfunct. 20, 1175–1181 (2009).

    Article  PubMed  Google Scholar 

  22. Shek, K. L. & Dietz, H. P. Intrapartum risk factors for levator trauma. BJOG 117, 1485–1492 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Dietz, H. P. Pelvic floor trauma following vaginal delivery. Curr. Opin. Obstet. Gynecol. 18, 528–537 (2006).

    Article  PubMed  Google Scholar 

  24. Falkert, A. et al. Three-dimensional ultrasound of pelvic floor: is there a correlation with delivery mode and persisting pelvic floor disorders 18–24 months after first delivery? Ultrasound Obstet. Gynecol. 41, 204–209 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Parente, M. P. et al. Deformation of the pelvic floor muscles during a vaginal delivery. Int. Urogynecol. J. Pelvic Floor Dysfunct. 19, 65–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hoyte, L. et al. Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am. J. Obstet. Gynecol. 199, 198.e1–198.e5 (2008).

    Article  Google Scholar 

  27. Brooks, S. V., Zerba, E. & Faulkner, J. A. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J. Physiol. 488, 459–469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lien, K. C. et al. Levator ani muscle stretch induced by simulated vaginal birth. Obstet. Gynecol. 103, 31–40 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jing, D., Ashton-Miller, J. A. & DeLancey, J. O. A subject-specific anisotropic visco-hyperelastic finite element model of female pelvic floor stress and strain during the second stage of labor. J. Biomech. 45, 455–460 (2012).

    Article  PubMed  Google Scholar 

  30. Li, X. et al. Anisotropic effects of the levator ani muscle during childbirth. Biomech. Model. Mechanobiol. 10, 485–494 (2011).

    Article  PubMed  Google Scholar 

  31. Li, X. et al. Modelling childbirth: comparing athlete and non-athlete pelvic floor mechanics. Med. Image Comput. Comput. Assist Interv 11, 750–757 (2008).

    CAS  PubMed  Google Scholar 

  32. Silva, M. E. et al. Study on the influence of the fetus head molding on the biomechanical behavior of the pelvic floor muscles, during vaginal delivery. J. Biomech. 48, 1600–1605 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Lien, K. C. et al. Pudendal nerve stretch during vaginal birth: a 3D computer simulation. Am. J. Obstet. Gynecol. 192, 1669–1676 (2005).

    Article  PubMed  Google Scholar 

  34. Robert, R. et al. Anatomic basis of chronic perineal pain: role of the pudendal nerve. Surg. Radiol. Anat. 20, 93–98 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, R. et al. Effects of acute graded strain on efferent conduction properties in the rabbit tibial nerve. Clin. Orthop. Relat. Res. 288–294 (1993).

  36. Snooks, S. J. et al. Injury to innervation of pelvic floor sphincter musculature in childbirth. Lancet 2, 546–550 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Allen, R. E. et al. Pelvic floor damage and childbirth: aneurophysiological study. Br. J. Obstet. Gynaecol. 97, 770–779 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Weidner, A. C. et al. Neuropathic injury to the levator ani occurs in 1 in 4 primiparous women. Am. J. Obstet. Gynecol. 195, 1851–1856 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. South, M. M. et al. Levator ani denervation and reinnervation 6 months after childbirth. Am. J. Obstet. Gynecol. 200, 519.e1–519.e7 (2009).

    Article  Google Scholar 

  40. Guillemeau, J. Les oeuvres de chirurgie de Jacques Guillemeau (N. Buon, 1612).

    Google Scholar 

  41. McPherson, K. C. et al. Can the risk of obstetric anal sphincter injuries (OASIs) be predicted using a risk-scoring system? BMC Res. Notes 7, 471 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Andrews, V. et al. Occult anal sphincter injuries — myth or reality? BJOG 113, 195–200 (2006).

    Article  PubMed  Google Scholar 

  43. Sultan, A. H., Thakar, R. & Fenner, D. E. Perineal and Anal Sphincter Trauma (Springer, 2007).

    Book  Google Scholar 

  44. Oberwalder, M. et al. The association between late-onset fecal incontinence and obstetric anal sphincter defects. Arch. Surg. 139, 429–432 (2004).

    Article  PubMed  Google Scholar 

  45. Guzman Rojas, R. A. et al. Prevalence of anal sphincter injury in primiparous women. Ultrasound Obstet. Gynecol. 42, 461–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Sultan, A. H. et al. Anal-sphincter disruption during vaginal delivery. N. Engl. J. Med. 329, 1905–1911 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Rieger, N. et al. The effect of a normal vaginal delivery on anal function. Acta Obstet. Gynecol. Scand. 76, 769–772 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Chaliha, C. et al. Anal function: effect of pregnancy and delivery. Am. J. Obstet. Gynecol. 185, 427–432 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Willis, S. et al. Childbirth and incontinence: a prospective study on anal sphincter morphology and function before and early after vaginal delivery. Langenbecks Arch. Surg. 387, 101–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Dietz, H. P. et al. Does pregnancy affect pelvic organ mobility? Aust. N. Z. J. Obstet. Gynaecol. 44, 517–520 (2004).

    Article  PubMed  Google Scholar 

  51. Chan, S. S. et al. Pelvic floor biometry during a first singleton pregnancy and the relationship with symptoms of pelvic floor disorders: a prospective observational study. BJOG 121, 121–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. van Veelen, A., Schweitzer, K. & van der Vaart, H. Ultrasound assessment of urethral support in women with stress urinary incontinence during and after first pregnancy. Obstet. Gynecol. 124, 249–256 (2014).

    Article  PubMed  Google Scholar 

  53. DeLancey, J. O. et al. Vaginal birth and de novo stress incontinence: relative contributions of urethral dysfunction and mobility. Obstet. Gynecol. 110, 354–362 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. van Geelen, J. M. et al. The urethral pressure profile in≈pregnancy and after delivery in healthy nulliparous women. Am. J. Obstet. Gynecol. 144, 636–649 (1982).

    Article  CAS  PubMed  Google Scholar 

  55. Weidner, A. C. et al. Change in urethral sphincter neuromuscular function during pregnancy persists after delivery. Am J. Obstet. Gynecol. 201, 529.e1–529.e6 (2009).

    Article  Google Scholar 

  56. Liu, S. et al. Maternal mortality and severe morbidity associated with low-risk planned cesarean delivery versus planned vaginal delivery at term. CMAJ 176, 455–460 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Deneux-Tharaux, C. et al. Postpartum maternal mortality and cesarean delivery. Obstet. Gynecol. 108, 541–548 (2006).

    Article  PubMed  Google Scholar 

  58. Nelson, R. L. et al. Cesarean delivery for the prevention of anal incontinence. Cochrane Database Syst. Rev. 2, CD006756 (2010).

    Google Scholar 

  59. Callewaert, G. et al. The impact of vaginal delivery on pelvic floor function — delivery as a time point for secondary prevention: a commentary. BJOG 123, 678–681 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Hsu, S. et al. A clinician's guide to the ABCs of cardiovascular disease prevention: the Johns Hopkins Ciccarone Center for the Prevention of Heart Disease and American College of Cardiology Cardiosource Approach to the Million Hearts Initiative. Clin. Cardiol. 36, 383–393 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Glazener, C. M. et al. Twelve-year follow-up of conservative management of postnatal urinary and faecal incontinence and prolapse outcomes: randomised controlled trial. BJOG 121, 112–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Enea, D. et al. Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate. Knee 20, 562–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Chase, L. G. & Vemuri, M. C. Mesenchymal Stem Cell Therapy (Springer, 2013).

    Book  Google Scholar 

  64. Kuroda, R. et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 15, 226–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Cannon, T. W. et al. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra. Urology 62, 958–963 (2003).

    Article  PubMed  Google Scholar 

  66. Dissaranan, C. et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 23, 1395–1406 (2014).

    Article  PubMed  Google Scholar 

  67. Salcedo, L. et al. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res. 10, 95–102 (2013).

    Article  PubMed  Google Scholar 

  68. Lin, G. et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12, 88–95 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kharraz, Y. et al. Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm. 2013, 491497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ley, K. et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Tidball, J. G. & Villalta, S. A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1173–R1187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen, H. X. & Tidball, J. G. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro. J. Physiol. 547, 125–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Villalta, S. A. et al. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18, 482–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Madaro, L. & Bouche, M. From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: the role of lymphocytes. Biomed Res. Int. 2014, 438675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sampaolesi, M. et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Lolmede, K. et al. Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J. Leukoc. Biol. 85, 779–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Schiaffino, S. Skeletal Muscle Repair and Regeneration (Springer, 2008).

    Google Scholar 

  81. Tos, P. et al. Future perspectives in nerve repair and regeneration. Int. Rev. Neurobiol. 109, 165–192 (2013).

    Article  PubMed  Google Scholar 

  82. Perkins, N. M. & Tracey, D. J. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience 101, 745–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Mueller, M. et al. Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab. Invest. 83, 175–185 (2003).

    Article  PubMed  Google Scholar 

  84. Faroni, A. et al. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv. Drug Deliv. Rev. 82–83, 160–167 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Geuna, S. et al. Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration. Int. Rev. Neurobiol. 87, 27–46 (2009).

    Article  PubMed  Google Scholar 

  86. Gaudet, A. D., Popovich, P. G. & Ramer, M. S. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflammation 8, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ydens, E. et al. The neuroinflammatory role of Schwann cells in disease. Neurobiol. Dis. 55, 95–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Ydens, E. et al. Acute injury in the peripheral nervous system triggers an alternative macrophage response. J. Neuroinflammation 9, 176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hannan, J. L. et al. Temporal changes in neurotrophic factors and neurite outgrowth in the major pelvic ganglion following cavernous nerve injury. J. Neurosci. Res. 93, 954–963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scheib, J. & Hoke, A. Advances in peripheral nerve regeneration. Nat. Rev. Neurol. 9, 668–676 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Hanz, S. et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40, 1095–1104 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Wujek, J. R. & Lasek, R. J. Correlation of axonal regeneration and slow component B in two branches of a single axon. J. Neurosci. 3, 243–251 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Veltri, K. et al. Contribution of the distal nerve sheath to nerve and muscle preservation following denervation and sensory protection. J. Reconstr. Microsurg. 21, 57–70 (2005).

    Article  PubMed  Google Scholar 

  94. Viguie, C. A. et al. Quantitative study of the effects of long-term denervation on the extensor digitorum longus muscle of the rat. Anat. Rec. 248, 346–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Moalli, P. A. et al. A rat model to study the structural properties of the vagina and its supportive tissues. Am. J. Obstet. Gynecol. 192, 80–88 (2005).

    Article  PubMed  Google Scholar 

  96. Do Carmo, E. et al. Histochemical and morphological characteristics of the levator ani muscle in rats. Int. J. Morphol. 4, 1195–1201 (2011).

    Article  Google Scholar 

  97. Poortmans, A. & Wyndaele, J. J. M. levator ani in the rat: does it really lift the anus? Anat. Rec. 251, 20–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Abramowitch, S. D. et al. Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur. J. Obstet. Gynecol. Reprod. Biol. 144 (Suppl. 1), S146–S158 (2009).

    Article  PubMed  Google Scholar 

  99. Couri, B. M. et al. Animal models of female pelvic organ prolapse: lessons learned. Expert Rev. Obstet. Gynecol. 7, 249–260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Chermansky, C. J. et al. A model of intrinsic sphincteric deficiency in the rat: electrocauterization. Neurourol. Urodyn. 23, 166–171 (2004).

    Article  PubMed  Google Scholar 

  101. Eberli, D. et al. A canine model of irreversible urethral sphincter insufficiency. BJU Int. 103, 248–253 (2009).

    Article  PubMed  Google Scholar 

  102. Zutshi, M. et al. Effects of sphincterotomy and pudendal nerve transection on the anal sphincter in a rat model. Dis. Colon Rectum. 52, 1321–1329 (2009).

    Article  PubMed  Google Scholar 

  103. Wai, C. Y. et al. Recovery of external anal sphincter contractile function after prolonged vaginal distention or sphincter transection in an animal model. Obstet. Gynecol. 111, 1426–1434 (2008).

    Article  PubMed  Google Scholar 

  104. Rodriguez, L. V. et al. New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1332–R1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Kefer, J. C., Liu, G. & Daneshgari, F. Pubo-urethral ligament injury causes long-term stress urinary incontinence in female rats: an animal model of the integral theory. J. Urol. 181, 397–400 (2009).

    Article  PubMed  Google Scholar 

  106. Conway, D. A. et al. Comparison of leak point pressure methods in an animal model of stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 16, 359–363 (2005).

    Article  PubMed  Google Scholar 

  107. Hijaz, A. et al. Animal models of female stress urinary incontinence. J. Urol. 179, 2103–2110 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Peng, C. W. et al. External urethral sphincter activity in a rat model of pudendal nerve injury. Neurourol. Urodyn. 25, 388–396 (2006).

    Article  PubMed  Google Scholar 

  109. Healy, C. F. et al. Experimental models of neuropathic fecal incontinence: an animal model of childbirth injury to the pudendal nerve and external anal sphincter. Dis. Colon Rectum. 51, 1619–1626 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, G. et al. Effects of prolonged vaginal distension and beta-aminopropionitrile on urinary continence and urethral structure. Urology 78, 968.e13–968.e19 (2011).

    Article  Google Scholar 

  111. Wood, H. M. et al. Cytokine expression after vaginal distention of different durations in virgin Sprague-Dawley rats. J. Urol. 180, 753–759 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Damaser, M. S. et al. Effect of vaginal distension on blood flow and hypoxia of urogenital organs of the female rat. J. Appl. Physiol. 98, 1884–1890 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Damaser, M. S. et al. Functional and neuroanatomical effects of vaginal distention and pudendal nerve crush in the female rat. J. Urol. 170, 1027–1031 (2003).

    Article  PubMed  Google Scholar 

  114. Hong, S. H. et al. Comparison of three types of stress urinary incontinence rat models: electrocauterization, pudendal denervation, and vaginal distension. Urology 81, 465.e1–465.e6 (2013).

    Article  Google Scholar 

  115. Jiang, H. H. et al. Dual simulated childbirth injuries result in slowed recovery of pudendal nerve and urethral function. Neurourol. Urodyn. 28, 229–235 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pan, H. Q. et al. Increased duration of simulated childbirth injuries results in increased time to recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1738–R1744 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Woo, L. L. et al. Over expression of stem cell homing cytokines in urogenital organs following vaginal distention. J. Urol. 177, 1568–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Cannon, T. W. & Damaser, M. S. Effects of anesthesia on cystometry and leak point pressure of the female rat. Life Sci. 69, 1193–1202 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Hakim, L. et al. High-frequency micro-ultrasound: a novel method to assess external urethral sphincter function in rats following simulated birth injury. Neurourol. Urodyn. 34, 264–269 (2014).

    Article  PubMed  Google Scholar 

  120. Pan, H. Q. et al. Dual simulated childbirth injury delays anatomic recovery. Am. J. Physiol. Renal Physiol. 296, F277–F283 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Salem, H. K. & Thiemermann, C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28, 585–596 (2010).

    CAS  PubMed  Google Scholar 

  122. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Petersen, B. E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Kopen, G. C., Prockop, D. J. & Phinney, D. G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl Acad. Sci. USA 96, 10711–10716 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jori, F. P. et al. Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J. Cell. Biochem. 94, 645–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Dellavalle, A. et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun. 2, 499 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Dimarino, A. M., Caplan, A. I. & Bonfield, T. L. Mesenchymal stem cells in tissue repair. Front. Immunol. 4, 201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Albersen, M. et al. Expression of a distinct set of chemokine receptors in adipose tissue-derived stem cells is responsible for in vitro migration toward chemokines appearing in the major pelvic ganglion following cavernous nerve injury. Sex. Med. 1, 3–15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chapel, A. et al. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J. Gene Med. 5, 1028–1038 (2003).

    Article  PubMed  Google Scholar 

  131. Salcedo, L. et al. Chemokine upregulation in response to anal sphincter and pudendal nerve injury: potential signals for stem cell homing. Int. J. Colorectal Dis. 26, 1577–1581 (2011).

    Article  PubMed  Google Scholar 

  132. Nemeth, K. et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Raffaghello, L. et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26, 151–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Kim, J. & Hematti, P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37, 1445–1453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cutler, A. J. et al. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J. Immunol. 185, 6617–6623 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Maggini, J. et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS ONE 5, e9252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang, Q. Z. et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28, 1856–1868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Munoz, J. R. et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc. Natl Acad. Sci. USA 102, 18171–18176 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Heldring, N. et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum. Gene Ther. 26, 506–517 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Lee, R. H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Verhoekx, J. S. et al. Adipose-derived stem cells inhibit the contractile myofibroblast in Dupuytren's disease. Plast. Reconstr. Surg. 132, 1139–1148 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Semedo, P. et al. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27, 3063–3073 (2009).

    CAS  PubMed  Google Scholar 

  143. Ortiz, L. A. et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc. Natl Acad. Sci. USA 100, 8407–8411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao, W. et al. Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World J. Gastroenterol. 18, 1048–1058 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yiou, R. et al. Muscle precursor cell autografting in a murine model of urethral sphincter injury. BJU Int. 89, 298–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, J. Y. et al. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 14, 31–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Kwon, D. et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology 68, 449–454 (2006).

    Article  PubMed  Google Scholar 

  148. Chermansky, C. J. et al. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology 63, 780–785 (2004).

    Article  PubMed  Google Scholar 

  149. Cruz, M. et al. Pelvic organ distribution of mesenchymal stem cells injected intravenously after simulated childbirth injury in female rats. Obstet. Gynecol. Int. 2012, 612946 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Deng, K. et al. Mesenchymal stem cells and their secretome preserve nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am. J. Physiol. Renal Physiol. 308, F92–F100 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Salcedo, L. et al. Functional outcome after anal sphincter injury and treatment with mesenchymal stem cells. Stem Cells Transl Med. 3, 760–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Carr, L. K. et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int. Urogynecol. J. Pelvic Floor Dysfunct. 19, 881–883 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Carr, L. K. et al. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J. Urol. 189, 595–601 (2013).

    Article  PubMed  Google Scholar 

  154. Peters, K. M. et al. Autologous muscle derived cells for treatment of stress urinary incontinence in women. J. Urol. 192, 469–476 (2014).

    Article  PubMed  Google Scholar 

  155. Sebe, P. et al. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int. Urogynecol. J. 22, 183–189 (2011).

    Article  PubMed  Google Scholar 

  156. Gras, S., Klarskov, N. & Lose, G. Intraurethral injection of autologous minced skeletal muscle: a simple surgical treatment for stress urinary incontinence. J. Urol. 192, 850–855 (2014).

    Article  PubMed  Google Scholar 

  157. Lee, C. N. et al. Human cord blood stem cell therapy for treatment of stress urinary incontinence. J. Korean Med. Sci. 25, 813–816 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Yamamoto, T. et al. Periurethral injection of autologous adipose-derived regenerative cells for the treatment of male stress urinary incontinence: report of three initial cases. Int. J. Urol. 19, 652–659 (2012).

    Article  PubMed  Google Scholar 

  159. Frudinger, A. et al. Muscle-derived cell injection to treat anal incontinence due to obstetric trauma: pilot study with 1 year follow-up. Gut 59, 55–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  160. Frudinger, A. et al. Autologous skeletal-muscle-derived cell injection for anal incontinence due to obstetric trauma: a 5-year follow-up of an initial study of 10 patients. Colorectal Dis. 17, 794–801 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01382602 (2017).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01600755 (2016).

  163. International Society for Stem Cell Research. Guidelines for the Clinical Translation of Stem Cells [online] (2008).

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.C. and N.S. researched data for this article, G.C., M.S., M.A. and J.D. made a substantial contribution to discussions of content, G.C., M.M.C.M.d.C., N.S., M.A. and J.D. wrote the manuscript and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jan Deprest.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S2 (table)

Use of mesenchymal stem cells in rat model of simulated vaginal birth injury (DOC 205 kb)

Trauma to the levator ani muscle during childbirth

Exposure of the levator ani to excessive forces during childbirth, which substantially increase the risk of pelvic-floor dysfunctions. (MP4 4656 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callewaert, G., Da Cunha, M., Sindhwani, N. et al. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 14, 373–385 (2017). https://doi.org/10.1038/nrurol.2017.42

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.42

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing