Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular basis for Rac1 recognition by guanine nucleotide exchange factors

Abstract

Rho GTPases are activated by a family of guanine nucleotide exchange factors (GEFs) known as Dbl family proteins. The structural basis for how GEFs recognize and activate Rho GTPases is presently ill defined. Here, we utilized the crystal structure of the DH/PH domains of the Rac-specific GEF Tiam1 in complex with Rac1 to determine the structural elements of Rac1 that regulate the specificity of this interaction. We show that residues in the Rac1 β2–β3 region are critical for Tiam1 recognition. Additionally, we determined that a single Rac1-to-Cdc42 mutation (W56F) was sufficient to abolish Rac1 sensitivity to Tiam1 and allow recognition by the Cdc42-specific DH/PH domains of Intersectin while not impairing Rac1 downstream activities. Our findings identified unique GEF specificity determinants in Rac1 and provide important insights into the mechanism of DH/PH selection of GTPase targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Residues in the Rac1 β2–β3 region involved in specific recognition of the Tiam1 DH domain.
Figure 2: Consequences of mutations in Rac1 β2–β3 region on stimulation by the Tiam1 and Intersectin DH/PH domains.
Figure 3: Consequences of the W56F mutation on Rac1(61L) signaling and transformation.
Figure 4: Consequences of the W56F mutation on Rac1-induced membrane ruffling.

Similar content being viewed by others

References

  1. Symons, M. Trends Biochem. Sci. 21, 178–181 (1996).

    Article  CAS  Google Scholar 

  2. Hall, A. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  3. Cerione, R.A. & Zheng, Y. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  Google Scholar 

  4. Whitehead, I.P., Campbell, S., Rossman, K.L. & Der, C.J. Biochem. Biophys. Acta 1332, 1–23 (1997).

    Google Scholar 

  5. Liu, X. et al. Cell 95, 269–277 (1998).

    Article  CAS  Google Scholar 

  6. Aghazadeh, B. et al. Nature Struct. Biol. 5, 1098–1107 (1998).

    Article  CAS  Google Scholar 

  7. Aghazadeh, B., Lowry, W.E., Huang, X.Y. & Rosen, M.K. Cell 102, 625–633 (2000).

    Article  CAS  Google Scholar 

  8. Soisson, S.M., Nimnual, A.S., Uy, M., Bar-Sagi, D. & Kuriyan, J. Cell 95, 259–268 (1998).

    Article  CAS  Google Scholar 

  9. Worthylake, D.K., Rossman, K.L. & Sondek, J. Nature 408, 682–688 (2000).

    Article  CAS  Google Scholar 

  10. Abe, K. et al. J. Biol. Chem. 275, 10141–10149 (2000).

    Article  CAS  Google Scholar 

  11. Abdul-Manan, N. et al. Nature 399, 379–383 (1999).

    Article  CAS  Google Scholar 

  12. Mott, H.R. et al. Nature 399, 384–388 (1999).

    Article  CAS  Google Scholar 

  13. Morreale, A. et al. Nature Struct. Biol. 7, 384–388 (2000).

    Article  CAS  Google Scholar 

  14. Coso, O.A. et al. Cell 81, 1137–1146 (1995).

    Article  CAS  Google Scholar 

  15. Clarke, N., Arenzana, N., Hai, T., Minden, A. & Prywes, R. Mol. Cell Biol. 18, 1065–1073 (1998).

    Article  CAS  Google Scholar 

  16. Minden, A., Lin, A., Claret, F.-X., Abo, A. & Karin, M. Cell 81, 1147–1157 (1995).

    Article  CAS  Google Scholar 

  17. Khosravi-Far, R., Solski, P.A., Kinch, M.S., Burridge, K. & Der, C.J. Mol. Cell Biol. 15, 6443–6453 (1995).

    Article  CAS  Google Scholar 

  18. Qiu, R.-G., Chen, J., McCormick, F. & Symons, M. Proc. Natl. Acad. Sci. USA 92, 11781–11785 (1995).

    Article  CAS  Google Scholar 

  19. Karnoub, A.E., Der, C.J. & Campbell, S.L. Mol. Cell Biol. 21, 2847–2857 (2001).

    Article  CAS  Google Scholar 

  20. Mossessova, E., Gulbis, J.M. & Goldberg, J. Cell 92, 415–423 (1998).

    Article  CAS  Google Scholar 

  21. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Cell 105, 245–255 (2001).

    Article  CAS  Google Scholar 

  22. Westwick, J.K. et al. Mol. Cell Biol. 17, 1324–1335 (1997).

    Article  CAS  Google Scholar 

  23. Benard, V., Bohl, B.P. & Bokoch, G.M. J. Biol. Chem. 274, 13198–13204 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pham for Tiam1 and Intersectin DH/PH protein preparations, Q. Lambert and H. Mehta for cell culture preparations and M. Rand for figure preparation. This work was supported by NIH grants to C.J.D. and S.L.C. D.K.W. is supported by a grant from the American Cancer Society. J.S. acknowledges the support from the NIH and the Pew Charitable Trusts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Channing J. Der.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnoub, A., Worthylake, D., Rossman, K. et al. Molecular basis for Rac1 recognition by guanine nucleotide exchange factors. Nat Struct Mol Biol 8, 1037–1041 (2001). https://doi.org/10.1038/nsb719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing