Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination

This article has been updated

Abstract

Several molecular mechanisms have been proposed to explain trinucleotide repeat expansions. Here we show that in yeast srs2Δ cells, CTG repeats undergo both expansions and contractions, and they show increased chromosomal fragility. Deletion of RAD52 or RAD51 suppresses these phenotypes, suggesting that recombination triggers trinucleotide repeat instability in srs2Δ cells. In sgs1Δ cells, CTG repeats undergo contractions and increased fragility by a mechanism partially dependent on RAD52 and RAD51. Analysis of replication intermediates revealed abundant joint molecules at the CTG repeats during S phase. These molecules migrate similarly to reversed replication forks, and their presence is dependent on SRS2 and SGS1 but not RAD51. Our results suggest that Srs2 promotes fork reversal in repetitive sequences, preventing repeat instability and fragility. In the absence of Srs2 or Sgs1, DNA damage accumulates and is processed by homologous recombination, triggering repeat rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CAG•CTG repeats show increased fragility in the absence of Srs2 or Sgs1 helicases.
Figure 2: Effect of the trinucleotide repeat tract orientation on stability.
Figure 3: Analysis of replication intermediates at the ARG2 locus by two-dimensional gel electrophoresis.
Figure 4: Analysis of replication intermediates at ARG2 by two-dimensional gel electrophoresis in wild-type (WT) and mutant strains.
Figure 5: A model showing different pathways to repair replication fork damage due to structure-forming sequences.

Similar content being viewed by others

Change history

  • 26 January 2009

    In the version of this article initially published online, the labels in Figure 1c, in the key to Figure 4 and in Table 2 were incorrect. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Gatchel, J.R. & Zoghbi, H.Y. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755 (2005).

    Article  CAS  Google Scholar 

  2. Mirkin, S.M. DNA structures, repeat expansions and human hereditary disorders. Curr. Opin. Struct. Biol. 16, 351–358 (2006).

    Article  CAS  Google Scholar 

  3. Lenzmeier, B.A. & Freudenreich, C.H. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet. Genome Res. 100, 7–24 (2003).

    Article  CAS  Google Scholar 

  4. Pearson, C.E., Edamura, K.N. & Cleary, J.D. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6, 729–742 (2005).

    Article  CAS  Google Scholar 

  5. Richard, G.-F., Dujon, B. & Haber, J.E. Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 261, 871–882 (1999).

    Article  CAS  Google Scholar 

  6. Richard, G.-F., Cyncynatus, C. & Dujon, B. Contractions and expansions of CAG/CTG trinucleotide repeats occur during ectopic gene conversion in yeast, by a MUS81-independent mechanism. J. Mol. Biol. 326, 769–782 (2003).

    Article  CAS  Google Scholar 

  7. Richard, G.-F., Goellner, G.M., McMurray, C.T. & Haber, J.E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11/RAD50/XRS2 complex. EMBO J. 19, 2381–2390 (2000).

    Article  CAS  Google Scholar 

  8. Richard, G.-F. & Pâques, F. Mini- and microsatellite expansions: the recombination connection. EMBO Rep. 1, 122–126 (2000).

    Article  CAS  Google Scholar 

  9. Freudenreich, C.H., Kantrow, S.M. & Zakian, V.A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  Google Scholar 

  10. Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999).

    Article  CAS  Google Scholar 

  11. Schweitzer, J.K. & Livingston, D.M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74 (1998).

    Article  CAS  Google Scholar 

  12. Loeillet, S. et al. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Repair (Amst.) 4, 459–468 (2005).

    Article  CAS  Google Scholar 

  13. Gangloff, S., McDonald, J.P., Bendixen, C., Arthur, L. & Rothstein, R. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14, 8391–8398 (1994).

    Article  CAS  Google Scholar 

  14. Watt, P.M., Hickson, I.D., Borts, R.H. & Louis, E.J. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Richard, G.-F., Kerrest, A., Lafontaine, I. & Dujon, B. Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol. Biol. Evol. 22, 1011–1023 (2005).

    Article  CAS  Google Scholar 

  16. Wu, L. & Hickson, I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

    Article  CAS  Google Scholar 

  17. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    Article  CAS  Google Scholar 

  18. Robert, T., Dervins, D., Fabre, F. & Gangloff, S. Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J. 25, 2837–2846 (2006).

    Article  CAS  Google Scholar 

  19. Adams, M.D., McVey, M. & Sekelsky, J.J. Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299, 265–267 (2003).

    Article  CAS  Google Scholar 

  20. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989).

    Article  CAS  Google Scholar 

  21. Rong, L. & Klein, H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 (1993).

    CAS  PubMed  Google Scholar 

  22. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003).

    Article  CAS  Google Scholar 

  23. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003).

    Article  CAS  Google Scholar 

  24. Dupaigne, P. et al. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell 29, 243–254 (2008).

    Article  CAS  Google Scholar 

  25. Bhattacharyya, S. & Lahue, R.S. Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats. Mol. Cell. Biol. 24, 7324–7330 (2004).

    Article  CAS  Google Scholar 

  26. Callahan, J.L., Andrews, K.J., Zakian, V.A. & Freudenreich, C.H. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol. Cell. Biol. 23, 7849–7860 (2003).

    Article  CAS  Google Scholar 

  27. Napierala, M., Parniewski, P., Pluciennik, A. & Wells, R.D. Long CTG•CAG repeat sequences markedly stimulate intramolecular recombination. J. Biol. Chem. 277, 34087–34100 (2002).

    Article  CAS  Google Scholar 

  28. Pluciennik, A. et al. Long CTG•CAG repeats from myotonic dystrophy are preferred sites for intermolecular recombination. J. Biol. Chem. 277, 34074–34086 (2002).

    Article  CAS  Google Scholar 

  29. Jankowski, C., Nasar, F. & Nag, D.K. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc. Natl. Acad. Sci. USA 97, 2134–2139 (2000).

    Article  CAS  Google Scholar 

  30. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25, 192–194 (2000).

    Article  CAS  Google Scholar 

  31. Fabre, F., Chan, A., Heyer, W.-D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. USA 99, 16887–16892 (2002).

    Article  CAS  Google Scholar 

  32. Freudenreich, C.H., Stavenhagen, J.B. & Zakian, V.A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17, 2090–2098 (1997).

    Article  CAS  Google Scholar 

  33. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat. Genet. 10, 213–217 (1995).

    Article  CAS  Google Scholar 

  34. Zahra, R., Blackwood, J.K., Sales, J. & Leach, D.R.F. Proofreading and secondary structure processing determine the orientation dependence of CAG•CTG trinucleotide repeat instability in Escherichia coli. Genetics 176, 27–41 (2007).

    Article  CAS  Google Scholar 

  35. Miret, J.J., Passoa-Brandaão, L. & Lahue, R.S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  Google Scholar 

  36. Maurer, D.J., O'Callaghan, B.L. & Livingston, D.M. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 6617–6622 (1996).

    Article  CAS  Google Scholar 

  37. Alvino, G.M. et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).

    Article  CAS  Google Scholar 

  38. Lammers, M. & Follmann, H. Deoxyribonucleotide biosynthesis in yeast (Saccharomyces cerevisiae). A ribonucleotide reductase system of sufficient activity for DNA synthesis. Eur. J. Biochem. 140, 281–287 (1984).

    Article  CAS  Google Scholar 

  39. Bhattacharyya, S. & Lahue, R.S. Srs2 helicase of Saccharomyces cerevisiae selectively unwinds triplet repeat DNA. J. Biol. Chem. 280, 33311–33317 (2005).

    Article  CAS  Google Scholar 

  40. Lopes, M., Cotta-Ramusino, C., Liberi, G. & Foiani, M. Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol. Cell 12, 1499–1510 (2003).

    Article  CAS  Google Scholar 

  41. Flores, M.J., Sanchez, N. & Michel, B. A fork-clearing role for UvrD. Mol. Microbiol. 57, 1664–1675 (2005).

    Article  CAS  Google Scholar 

  42. Daee, D.L., Mertz, T. & Lahue, R.S. Postreplication repair inhibits CAG-CTG repeat expansions in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 102–110 (2007).

    Article  CAS  Google Scholar 

  43. Goldfarb, T. & Alani, E. Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal. Genetics 169, 563–574 (2005).

    Article  CAS  Google Scholar 

  44. Sugawara, N., Goldfarb, T., Studamire, B., Alani, E. & Haber, J.E. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl. Acad. Sci. USA 101, 9315–9320 (2004).

    Article  CAS  Google Scholar 

  45. Richard, G.F., Kerrest, A. & Dujon, B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev. 72, 686–727 (2008).

    Article  CAS  Google Scholar 

  46. Kamath-Loeb, A.S., Johansson, E., Burgers, P.M. & Loeb, L.A. Functional interaction between the Werner Syndrome protein and DNA polymerase δ. Proc. Natl. Acad. Sci. USA 97, 4603–4608 (2000).

    Article  CAS  Google Scholar 

  47. Kamath-Loeb, A.S., Loeb, L.A., Johansson, E., Burgers, P.M. & Fry, M. Interactions between the Werner syndrome helicase and DNA polymerase δ specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J. Biol. Chem. 276, 16439–16446 (2001).

    Article  CAS  Google Scholar 

  48. Pelletier, R., Krasilnikova, M.M., Samadashwily, G.M., Lahue, R. & Mirkin, S.M. Replication and expansion of trinucleotide repeats in yeast. Mol. Cell. Biol. 23, 1349–1357 (2003).

    Article  CAS  Google Scholar 

  49. Samadashwily, G.M., Raca, G. & Mirkin, S.M. Trinucleotide repeats affect DNA replication in vivo. Nat. Genet. 17, 298–304 (1997).

    Article  CAS  Google Scholar 

  50. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).

    Article  CAS  Google Scholar 

  51. Long, D.T. & Kreuzer, K.N. Regression supports two mechanisms of fork processing in phage T4. Proc. Natl. Acad. Sci. USA 105, 6852–6857 (2008).

    Article  CAS  Google Scholar 

  52. Fouché, N., Özgür, S., Roy, D. & Griffith, J.D. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 34, 6044–6050 (2006).

    Article  Google Scholar 

  53. Fierro-Fernandez, M., Hernandez, P., Krimer, D.B. & Schvartzman, J.B. Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains. J. Biol. Chem. 282, 18190–18196 (2007).

    Article  CAS  Google Scholar 

  54. Fierro-Fernandez, M., Hernandez, P., Krimer, D.B. & Schvartzman, J.B. Topological locking restrains replication fork reversal. Proc. Natl. Acad. Sci. USA 104, 1500–1505 (2007).

    Article  CAS  Google Scholar 

  55. Liberi, G. et al. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19, 339–350 (2005).

    Article  CAS  Google Scholar 

  56. Cobb, J.A., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S.M. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22, 4325–4336 (2003).

    Article  CAS  Google Scholar 

  57. Nieduszynski, C.A., Knox, Y. & Donaldson, A.D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20, 1874–1879 (2006).

    Article  CAS  Google Scholar 

  58. Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  Google Scholar 

  59. Liberi, G. et al. Methods to study replication fork collapse in budding yeast. Methods Enzymol. 409, 442–462 (2006).

    Article  CAS  Google Scholar 

  60. Goldfless, S.J., Morag, A.S., Belisle, K.A., Sutera, V.A.J. & Lovett, S.T. DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol. Cell 21, 595–604 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.K. is grateful to G. Maffioletti for teaching her the two-dimensional gel electrophoresis technique and helping with her first successful experiments. A.K. and G.-F.R. thank the people who gave them advice concerning two-dimensional gel electrophoresis: M. Foiani, C. Maric, A. Ceschia and A. Kaykov. They also gratefully acknowledge the help of G. Millot for advice concerning the various statistical tests used in this manuscript. They and B.D. also thank their colleagues of the Unité de Génétique Moléculaire des Levures for many fruitful discussions and G. Fischer for careful reading of the manuscript. R.P.A. would like to acknowledge the help of K. Suryanarayanan in installing the SALVADOR program. A.K. was funded by the Ministère de la Recherche and the Fondation pour la Recherche Médicale (FRM). This work was supported by grant 3738 from the Association pour la Recherche contre le Cancer (ARC), grant ANR-05-BLAN-0331 from the Agence Nationale de la Recherche, US National Institutes of Health grant GM063066 to C.H.F., Tufts University FRAC award to C.H.F. and GSC Research Award to R.P.A. B.D. is a member of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

A.K. and G.-F.R. conceived of and performed the instability and two-dimensional studies on yeast chromosome X; C.H.F. and R.P.A. conceived of and performed the instability and fragility studies on the YAC, with R.S. contributing the rad51Δ (CAG)0 and (CAG)70 fragility analyses; R.B. and G.L. gave expert assistance with two-dimensional gel electrophoresis; A.K., B.D., G.-F.R., C.H.F. and R.P.A. analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Guy-Franck Richard.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerrest, A., Anand, R., Sundararajan, R. et al. SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination. Nat Struct Mol Biol 16, 159–167 (2009). https://doi.org/10.1038/nsmb.1544

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1544

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing