Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reappraising the effects of artemisinin on the ATPase activity of PfATP6 and SERCA1a E255L expressed in Xenopus laevis oocytes

Subjects

An Erratum to this article was published on 05 April 2016

This article has been updated

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATPase activities in P2 membrane fractions prepared from oocytes expressing SERCA1a, SERCA1a E255L or PfATP6.

Change history

  • 13 January 2016

    In the version of this article initially published, the position of the mutation reported in ref. 7 was incorrectly described as L236; it should be L263. In addition, in the HTML version of this article originally published, the concentration of artemisinin was given incorrectly as 50 mM instead of 50 μM; the PDF version and the legend text were correct. The errors have been corrected in the PDF and HTML versions of the article.

References

  1. Eckstein-Ludwig, U. et al. Nature 424, 957–961 (2003).

    Article  CAS  Google Scholar 

  2. Uhlemann, A.C. et al. Nat. Struct. Mol. Biol. 12, 628–629 (2005).

    Article  CAS  Google Scholar 

  3. Cardi, D. et al. J. Biol. Chem. 285, 26406–26416 (2010).

    Article  CAS  Google Scholar 

  4. Ariey, F. et al. Nature 505, 50–55 (2014).

    Article  Google Scholar 

  5. Phompradit, P., Wisedpanichkij, R., Muhamad, P., Chaijaroenkul, W. & Na-Bangchang, K. Acta Trop. 120, 130–135 (2011).

    Article  CAS  Google Scholar 

  6. Jambou, R. et al. PLoS One 5, e9424 (2010).

    Article  Google Scholar 

  7. Chilongola, J., et al. Malar. Res. Treat. 2015, 279028 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Valderramos, S.G., Scanfeld, D., Uhlemann, A.-C., Fidock, D.A. & Krishna, S. Antimicrob. Agents Chemother. 54, 3842–3852 (2010).

    Article  CAS  Google Scholar 

  9. Krishna, S., Pulcini, S., Fatih, F. & Staines, H. Trends Parasitol. 26, 517–523 (2010).

    Article  CAS  Google Scholar 

  10. Uhlemann, A.C. et al. Nat. Struct. Mol. Biol. 19, 264 (2012).

    Article  CAS  Google Scholar 

  11. Krishna, S., Pulcini, S., Moore, C.M., Teo, B.H. & Staines, H.M. Trends Pharmacol. Sci. 35, 4–11 (2014).

    Article  CAS  Google Scholar 

  12. Arnou, B. et al. Biochem. Soc. Trans. 39, 823–831 (2011).

    Article  CAS  Google Scholar 

  13. David-Bosne, S. et al. FEBS J. 280, 5419–5429 (2013).

    Article  CAS  Google Scholar 

  14. Krishna, S. et al. J. Biol. Chem. 276, 10782–10787 (2001).

    Article  CAS  Google Scholar 

  15. Spillman, N.J. et al. Cell Host Microbe 13, 227–237 (2013).

    Article  CAS  Google Scholar 

  16. Rottmann, M. et al. Science 329, 1175–1180 (2010).

    Article  CAS  Google Scholar 

  17. Ghorbal, M. et al. Nat. Biotechnol. 32, 819–821 (2014).

    Article  CAS  Google Scholar 

  18. Straimer, J. et al. Science 347, 428–431 (2014).

    Article  Google Scholar 

  19. Mok, S. et al. Science 347, 431–435 (2015).

    Article  CAS  Google Scholar 

  20. Miotto, O. et al. Nat. Genet. 47, 226–234 (2015).

    Article  CAS  Google Scholar 

  21. Tun, K.M. et al. Lancet Infect. Dis. 15, 415–421 (2015).

    Article  CAS  Google Scholar 

  22. Mbengue, A. et al. Nature 520, 683–687 (2015).

    Article  CAS  Google Scholar 

  23. Dogovski, C. et al. PLoS Biol. 13, e1002132 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to C. Jaxel (UMR 9198, Gif sur Yvette) for invaluable help throughout this study; to I. Florent (UMR 7245, Paris) for the direct test of artemisinin on live parasites; to C. Montigny (UMR 9198, Gif sur Yvette) for complementary experiments and fruitful discussions; to D. Cardi (UMR 9198, Gif sur Yvette), who initiated the work on PfATP6; to B. Arnou (Aarhus University) for preliminary work on the oocyte system; to B. Gasnier and C. Jouffret (UMR 8192, Paris) for the gift of control oocytes; to B. Miroux (UMR 7099, Paris) for continuous support; and to G. Lenoir, P. Champeil and J.L. Vazquez-Ibar (UMR 9198, Gif sur Yvette) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Poul Nissen or Marc le Maire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Note (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David-Bosne, S., Clausen, M., Poulsen, H. et al. Reappraising the effects of artemisinin on the ATPase activity of PfATP6 and SERCA1a E255L expressed in Xenopus laevis oocytes. Nat Struct Mol Biol 23, 1–2 (2016). https://doi.org/10.1038/nsmb.3156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing