Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rb/E2F4 and Smad2/3 link survivin to TGF-β-induced apoptosis and tumor progression

Abstract

Survivin is a prosurvival protein overexpressed in many cancers through mechanisms that remain poorly explored, and is implicated in control of tumor progression and resistance to cancer chemotherapeutics. Here, we report a critical role for survivin in the induction of apoptosis by transforming growth factor-β (TGF-β). We show that TGF-β rapidly downregulates survivin expression in prostate epithelial cells, through a unique mechanism of transcriptional suppression involving Smads 2 and 3, Rb/E2F4, and the cell-cycle repressor elements CDE and CHR. This TGF-β response is triggered through a Smad2/3-dependent hypophosphorylation of Rb and the subsequent association of the Rb/E2F4 repressive complex to CDE/CHR elements in the proximal region of the survivin promoter. Viral-mediated gene delivery experiments, involving overexpressing or silencing survivin, reveal critical roles of survivin in apoptosis induced by TGF-β alone or in cooperation with cancer therapeutic agents. We propose a novel TGF-β/Rb/survivin axis with a putative role in the functional switch of TGF-β from tumor suppressor to tumor promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

3TP-Lux:

3TP-luciferase

CA-ALK5:

constitutively active ALK5

Cdk:

cyclin-dependent kinase

DC-FBS:

dextran charcoal-treated FBS

DMEM/F-12:

Dulbecco's modified Eagle's medium/Ham's F-12

DNAP:

DNA pull-down assay

EMSA:

electrophoretic mobility shift assay

FACS:

fluorescence-activated cell sorting

FBS:

fetal bovine serum

HEK293T:

human embryonic kidney cell line 293 inserted with SV40 T antigen

IAP:

inhibitor of apoptosis

P-Rb:

phosphorylated Rb

P-Smad:

phosphorylated Smad

Rb:

retinoblastoma protein

R-Smad:

receptor-regulated Smad

SAC:

a 32-bp survivin promoter region (−50/−19) containing SBE2, CDE and CHR elements

SBE:

Smad-binding element

shRNA:

short-hairpin RNA

TβRI:

TGF-β receptor type I

TβRII:

TGF-β receptor type II

TGF-β:

transforming growth factor-β

References

  • Altieri DC . (2003a). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22: 8581–8589.

    Article  CAS  Google Scholar 

  • Altieri DC . (2003b). Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3: 46–54.

    Article  CAS  Google Scholar 

  • Bello D, Webber MM, Kleinman HK, Wartinger DD, Rhim JS . (1997). Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18: 1215–1223.

    Article  CAS  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massague J . (2002). E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110: 19–32.

    Article  CAS  Google Scholar 

  • Chipuk JE, Bhat M, Hsing AY, Ma J, Danielpour D . (2001). Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells. J Biol Chem 276: 26614–26621.

    Article  CAS  Google Scholar 

  • Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ et al. (2002). The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 277: 1240–1248.

    Article  CAS  Google Scholar 

  • Danielpour D . (2005). Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Eur J Cancer 41: 846–857.

    Article  CAS  Google Scholar 

  • Danielpour D, Kadomatsu K, Anzano MA, Smith JM, Sporn MB . (1994). Development and characterization of nontumorigenic and tumorigenic epithelial cell lines from rat dorsal-lateral prostate. Cancer Res 54: 3413–3421.

    CAS  Google Scholar 

  • Danielpour D, Song K . (2006). Cross-talk between IGF-I and TGF-beta signaling pathways. Cytokine Growth Factor Rev 17: 59–74.

    Article  CAS  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  Google Scholar 

  • Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF . (2004). Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol 24: 2546–2559.

    Article  CAS  Google Scholar 

  • Harbour JW, Dean DC . (2000). Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2: E65–E67.

    Article  CAS  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV et al. (1998). Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26: 362–367.

    Article  CAS  Google Scholar 

  • Hilger-Eversheim K, Moser M, Schorle H, Buettner R . (2000). Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260: 1–12.

    Article  CAS  Google Scholar 

  • Hsing AY, Kadomatsu K, Bonham MJ, Danielpour D . (1996). Regulation of apoptosis induced by transforming growth factor-beta1 in nontumorigenic rat prostatic epithelial cell lines. Cancer Res 56: 5146–5149.

    CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62: 65–74.

    Article  CAS  Google Scholar 

  • Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML et al. (2005). p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2 . J Cell Sci 118: 1821–1832.

    Article  CAS  Google Scholar 

  • Jarrard DF, Modder J, Fadden P, Fu V, Sebree L, Heisey D et al. (2002). Alterations in the p16/pRb cell cycle checkpoint occur commonly in primary and metastatic human prostate cancer. Cancer Lett 185: 191–199.

    Article  CAS  Google Scholar 

  • Jiang Y, Saavedra HI, Holloway MP, Leone G, Altura RA . (2004). Aberrant regulation of survivin by the RB/E2F family of proteins. J Biol Chem 279: 40511–40520.

    Article  CAS  Google Scholar 

  • Kishi H, Igawa M, Kikuno N, Yoshino T, Urakami S, Shiina H . (2004). Expression of the survivin gene in prostate cancer: correlation with clinicopathological characteristics, proliferative activity and apoptosis. J Urol 171: 1855–1860.

    Article  CAS  Google Scholar 

  • Knudsen KE, Weber E, Arden KC, Cavenee WK, Feramisco JR, Knudsen ES . (1999). The retinoblastoma tumor suppressor inhibits cellular proliferation through two distinct mechanisms: inhibition of cell cycle progression and induction of cell death. Oncogene 18: 5239–5245.

    Article  CAS  Google Scholar 

  • Le Cam L, Polanowska J, Fabbrizio E, Olivier M, Philips A, Ng Eaton E et al. (1999). Timing of cyclin E gene expression depends on the regulated association of a bipartite repressor element with a novel E2F complex. EMBO J 18: 1878–1890.

    Article  CAS  Google Scholar 

  • Liston P, Fong WG, Korneluk RG . (2003). The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22: 8568–8580.

    Article  CAS  Google Scholar 

  • Liu N, Lucibello FC, Korner K, Wolfraim LA, Zwicker J, Muller R . (1997). CDF-1, a novel E2F-unrelated factor, interacts with cell cycle-regulated repressor elements in multiple promoters. Nucleic Acids Res 25: 4915–4920.

    Article  CAS  Google Scholar 

  • Lucibello FC, Liu N, Zwicker J, Gross C, Muller R . (1997). The differential binding of E2F and CDF repressor complexes contributes to the timing of cell cycle-regulated transcription. Nucleic Acids Res 25: 4921–4925.

    Article  CAS  Google Scholar 

  • Massague J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  CAS  Google Scholar 

  • Massague J, Wotton D . (2000). Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19: 1745–1754.

    Article  CAS  Google Scholar 

  • Pennati M, Binda M, Colella G, Zoppe M, Folini M, Vignati S et al. (2004). Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene 23: 386–394.

    Article  CAS  Google Scholar 

  • Roberts AB, Wakefield LM . (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621–8623.

    Article  CAS  Google Scholar 

  • Salvesen GS, Duckett CS . (2002). IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3: 401–410.

    Article  CAS  Google Scholar 

  • Shariat SF, Lotan Y, Saboorian H, Khoddami SM, Roehrborn CG, Slawin KM et al. (2004). Survivin expression is associated with features of biologically aggressive prostate carcinoma. Cancer 100: 751–757.

    Article  CAS  Google Scholar 

  • Sharma A, Comstock CE, Knudsen ES, Cao KH, Hess-Wilson JK, Morey LM et al. (2007). Retinoblastoma tumor suppressor status is a critical determinant of therapeutic response in prostate cancer cells. Cancer Res 67: 6192–6203.

    Article  CAS  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Song K, Cornelius SC, Danielpour D . (2003a). Development and characterization of DP-153, a nontumorigenic prostatic cell line that undergoes malignant transformation by expression of dominant-negative transforming growth factor beta receptor type II. Cancer Res 63: 4358–4367.

    CAS  Google Scholar 

  • Song K, Cornelius SC, Reiss M, Danielpour D . (2003b). Insulin-like growth factor-I inhibits transcriptional responses of transforming growth factor-beta by phosphatidylinositol 3-kinase/Akt-dependent suppression of the activation of Smad3 but not Smad2. J Biol Chem 278: 38342–38351.

    Article  CAS  Google Scholar 

  • Song K, Wang H, Krebs TL, Danielpour D . (2006). Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J 25: 58–69.

    Article  CAS  Google Scholar 

  • Tang B, De Castro K, Barnes HE, Parks WT, Stewart L, Bottinger EP et al. (1999). Loss of responsiveness to transforming growth factor beta induces malignant transformation of nontumorigenic rat prostate epithelial cells. Cancer Res 59: 4834–4842.

    CAS  Google Scholar 

  • Taylor WR, Schonthal AH, Galante J, Stark GR . (2001). p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276: 1998–2006.

    Article  CAS  Google Scholar 

  • Ten Dijke P, Hill CS . (2004). New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29: 265–273.

    Article  CAS  Google Scholar 

  • Wajapeyee N, Britto R, Ravishankar HM, Somasundaram K . (2006). Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem 281: 16207–16219.

    Article  CAS  Google Scholar 

  • Wang H, Song K, Sponseller TL, Danielpour D . (2005). Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling. J Biol Chem 280: 5154–5162.

    Article  CAS  Google Scholar 

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014.

    Article  CAS  Google Scholar 

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1: 611–617.

    Article  CAS  Google Scholar 

  • Zhang M, Latham DE, Delaney MA, Chakravarti A . (2005). Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene 24: 2474–2482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Gene Expression and Genotyping Facility, the Flow Cytometry Core Facility of the Case Comprehensive Cancer Center (P30 CA43703). Grant support: NCI grants R01CA092102 and R01CA102074 (to D Danielpour).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Danielpour.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Song, K., Krebs, T. et al. Rb/E2F4 and Smad2/3 link survivin to TGF-β-induced apoptosis and tumor progression. Oncogene 27, 5326–5338 (2008). https://doi.org/10.1038/onc.2008.165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.165

Keywords

This article is cited by

Search

Quick links