Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells

Abstract

RUNX3 is a tumor suppressor that is silenced in cancer following hypermethylation of its promoter. The effects of hypoxia in tumor suppressor gene (TSG) transcription are largely unknown. Here, we investigated hypoxia-induced silencing mechanisms of RUNX3. The expression of RUNX3 was downregulated in response to hypoxia in human gastric cancer cells at the transcriptional level. This downregulation was abolished following treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and cytosine methylation inhibitor 5-aza-2-deoxycytidine (5-Aza), suggesting that an epigenetic regulatory mechanism may be involved in RUNX3 silencing by hypoxia. DNA methylation PCR and bisulfite-sequencing data revealed that hypoxia did not affect the methylation of RUNX3 promoter. A chromatin immunoprecipitation (ChIP) assay revealed increased histone H3-lysine 9 dimethylation and decreased H3 acetylation in the RUNX3 promoter following hypoxia. Hypoxia resulted in the upregulation of G9a histone methyltransferase (HMT) and HDAC1; additionally, overexpression of G9a and HDAC1 attenuated RUNX3 expression. The overexpression of G9a and HDAC1, but not their mutants, inhibited the nuclear localization and expression of RUNX3. Diminished mRNA expression and nuclear localization of RUNX3 during hypoxia was abolished by siRNA-mediated knockdown of G9a and HDAC1. This study suggests that hypoxia silences RUNX3 by epigenetic histone regulation during the progression of gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anderson C, Nijagal A, Kim J . (2006). Molecular markers for gastric adenocarcinoma: an update. Mol Diagn Ther 10: 345–352.

    Article  CAS  PubMed  Google Scholar 

  • Bachman KE, Park BH, Rhee I, Rajagopalan H, Herman JG, Baylin SB et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3: 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Bae SC, Lee YH . (2006). Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366: 58–66.

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Herman JG . (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Box AH, Demetrick DJ . (2004). Cell cycle kinase inhibitor expression and hypoxia-induced cell cycle arrest in human cancer cell lines. Carcinogenesis 25: 2325–2335.

    Article  CAS  PubMed  Google Scholar 

  • Bunn HF, Poyton RO . (1996). Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885.

    Article  CAS  PubMed  Google Scholar 

  • Chan AO, Lam SK, Wong BC, Kwong YL, Rashid A . (2003). Gene methylation in non-neoplastic mucosa of gastric cancer: age or Helicobacter pylori related? Am J Pathol 163: 370–371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yan Y, Davidson TL, Yoichi S, Costa M . (2006). Hypoxia stress induces dimethylated histone H3 lysine 9 through histone methyltranstrease G9a in mammalian cells. Cancer Res 66: 9009–9016.

    Article  CAS  PubMed  Google Scholar 

  • Durst KL, Hiebert SW . (2004). Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23: 4220–4224.

    Article  CAS  PubMed  Google Scholar 

  • Ekstrom AM, Held M, Hansson LE, Engstrand L, Nyren O . (2001). Helicobacter pylori in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology 121: 784–791.

    Article  CAS  PubMed  Google Scholar 

  • Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66: 3567–3575.

    Article  CAS  PubMed  Google Scholar 

  • Fahrner JA, Eguchi S, Herman JG, Baylin SB . (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res 62: 7213–7218.

    CAS  PubMed  Google Scholar 

  • Gibbons RJ (2005). Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 14: R85–R92.

    Article  CAS  PubMed  Google Scholar 

  • Harris AL . (2002). Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB . (1996). Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Ida H, Ito K, Zhang H, Ito Y . (2007). Contribution of reactivated RUNX3 to inhibition of gastric cancer cell growth following suberoylanilide hydroxamic acid (vorinostat) treatment. Biochem Pharmacol 73: 990–1000.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H et al. (2005). RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65: 7743–77450.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov SV, Salnikow K, Ivanova AV, Bai L, Lerman MI . (2007). Hypoxic repression of STAT1 and its downstream genes by a pVHL/HIF-1 target DEC1/STRA13. Oncogene 26: 802–812.

    Article  CAS  PubMed  Google Scholar 

  • Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ et al. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J Biol Chem 279: 29409–29417.

    Article  CAS  PubMed  Google Scholar 

  • Johnson EN, Lee YM, Sander TL, Rabkin E, Schoen FJ, Kaushal S et al. (2003). NFATc1 mediates vascular endothelial growth factor-induced proliferation in human pulmonary valve endothelial cells. J Biol Chem 278: 1686–1692.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW . (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1: 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2007). The epigenomics of cancer. Cell 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19: 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7: 437–443.

    Article  PubMed  Google Scholar 

  • Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66: 2725–2731.

    Article  CAS  PubMed  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Li QL, Kim HR, Kim WJ, Choi JK, Lee YH, Kim HM et al. (2004). Transcriptional silencing of the RUNX3 gene by CpG hypermethylation is associated with lung cancer. Biochem Biophys Res Commun 314: 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Oakeley EJ, Sun L, Jost JP . (1998). Multiple domains are involved in the targeting of the mouse DNA methyltransferase to the DNA replication foci. Nucleic Acids Res 26: 1038–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng AX, Jalali F, Cuddihy A, Chan N, Bindra RS, Glazer PM et al. (2005). Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol 76: 168–176.

    Article  CAS  PubMed  Google Scholar 

  • Mihaylova VT, Bindra RS, Yuan J, Campisi D, Narayanan L, Jensen R et al. (2003). Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23: 3265–3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momparler RL . (2002). Cancer epigenetics. Oncogene 22: 6479–6483.

    Article  Google Scholar 

  • Nan X, Campoy FJ, Bird A . (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88: 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393: 386–389.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G et al. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res 62: 6456–6461.

    CAS  PubMed  Google Scholar 

  • Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D et al. (2001). Rb targets histone H3 methylation and HP1 to promoters. Nature 412: 561–565.

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E . (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP . (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25: 338–342.

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. (1999). The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Re 27: 2291–2298.

    Article  CAS  Google Scholar 

  • Semenza GL . (2003). Angiogenesis in ischemic and neoplastic disorders. Annu Rev Med 54: 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Zhang T, Rzeszutek M, Yurkova N, Baetz D, Davie JR et al. (2006). Transcriptional silencing of the death gene BNIP3 by cooperative action of NF-kappaB and histone deacetylase 1 in ventricular myocytes. Circ Res 99: 1347–1354.

    Article  CAS  PubMed  Google Scholar 

  • Takebayashi S, Nakao M, Fujita N, Sado T, Tanaka M, Taguchi H et al. (2001). 5-Aza-2′-deoxycytidine induces histone hyperacetylation of mouse centromeric heterochromatin by a mechanism independent of DNA demethylation. Biochem Biophys Res Commun 288: 921–926.

    Article  CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU . (2003). Synthesis of signals for de novo DNA methylation in Neurospora crassa. Mol Cell Biol 23: 2379–2394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M et al. (2001). Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345: 784–789.

    Article  CAS  PubMed  Google Scholar 

  • Ushijima T, Sasako M . (2004). Focus on gastric cancer. Cancer Cell 5: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP . (1999). Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23: 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Gong W, Oh SC, Lo Q, Kim WD, Wang L et al. (2005). Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res 65: 4809–4816.

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Soman NS, Verdine GL, Bestor TH . (1997). DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 270: 385–395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Expression vectors of full-length HDAC1 and HDAC1 mutants were kindly provided by Dr Kyu-Won Kim (Seoul National University), GFP-tagged human G9a expression vector, pEGFP-hG9a, and its SET domain deletion mutant, pEGFP-hG9a (ΔSET) were by Martin Walsh (Mount Sinai School of Medicine, New York, NY, USA) and myc-tagged RUNX3 plasmids in pCS4 was by Dr Suk-Chul Bae (Chungbuk National University, Korea). This work was supported by National R&D Program for Cancer Control, Ministry of Health and Welfare (0520120-1) and the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST; R01-2006-000-11046-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y M Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Kim, J., Kim, WH. et al. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene 28, 184–194 (2009). https://doi.org/10.1038/onc.2008.377

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.377

Keywords

This article is cited by

Search

Quick links