Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The α-receptor for platelet-derived growth factor as a target for antibody-mediated inhibition of skeletal metastases from prostate cancer cells

Abstract

Bone resorption by osteoclasts is thought to promote the proliferation of prostate cancer cells disseminated to the skeleton (Mundy, 2002). Using a mouse model of experimental metastasis, we found that although late-stage metastatic tumors were indeed surrounded by osteoclasts, these cells were spatially unrelated to the small foci of cancer cells in early-stage metastases. This is the first evidence that survival and growth of disseminated prostate cancer cells immediately after their extravasation may not depend on osteoclast involvement. Interestingly, prostate cancer cells expressing the α-receptor for platelet-derived growth factor (PDGFRα) progress during early-stages of skeletal dissemination, whereas cells expressing lower levels or lacking this receptor fail to survive after extravasation in the bone marrow. However, non-metastatic cells acquire bone-metastatic potential upon ectopic overexpression of PDGFRα. Finally, functional blockade of human PDGFRα on prostate cancer cells utilizing a novel humanized monoclonal antibody—soon to undergo phase-II clinical trials—significantly impairs the establishment of early skeletal metastases. In conclusion, our results strongly implicate PDGFRα in prostate cancer bone tropism through its promotion of survival and progression of early-metastatic foci, providing ground for therapeutic strategies aimed at preventing or containing the initial progression of skeletal metastases in patients affected by prostate adenocarcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Andrae J, Gallini R, Betsholtz C . (2008). Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22: 1276–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajaj GK, Zhang Z, Garrett-Mayer E, Drew R, Sinibaldi V, Pili R et al. (2007). Phase II study of imatinib mesylate in patients with prostate cancer with evidence of biochemical relapse after definitive radical retropubic prostatectomy or radiotherapy. Urology 69: 526–531.

    Article  PubMed  Google Scholar 

  • Betsholtz C . (2004). Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15: 215–228.

    Article  CAS  PubMed  Google Scholar 

  • Canon JR, Roudier M, Bryant R, Morony S, Stolina M, Kostenuik PJ et al. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 25: 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF . (2008). The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8: 187–198.

    Article  CAS  PubMed  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC . (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Dolloff NG, Russell MR, Loizos N, Fatatis A . (2007). Human bone marrow activates the Akt pathway in metastatic prostate cells through transactivation of the alpha-platelet-derived growth factor receptor. Cancer Res 67: 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Dolloff NG, Shulby SS, Nelson AV, Stearns ME, Johannes GJ, Thomas JD et al. (2005). Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by alpha platelet-derived growth factor receptor. Oncogene 24: 6848–6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler IJ . (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Fritz V, Louis-Plence P, Apparailly F, Noël D, Voide R, Pillon A et al. (2007). Micro-CT combined with bioluminescence imaging: a dynamic approach to detect early tumor-bone interaction in a tumor osteolysis murine model. Bone 40: 1032–1040.

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Ngyuen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al. (2007). Mediators of vascular remodeling co-opted for sequential steps in lung metastasis. Nature 446: 765–770.

    Article  CAS  PubMed  Google Scholar 

  • Heldin C-H, Westermark B . (1999). Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79: 1283–1316.

    Article  CAS  PubMed  Google Scholar 

  • Jamieson WL, Shimizu S, D’Ambrosio JA, Meucci O, Fatatis A . (2008). CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68: 1715–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsley LA, Fournier PG, Chirgwin JM, Guise TA . (2007). Molecular biology of bone metastasis. Mol Cancer Ther 10: 2609–2617.

    Article  Google Scholar 

  • Lee YP, Schwarz EM, Davies M, Jo M, Gates J, Shang X et al. (2002). Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res 62: 5564–5570.

    CAS  PubMed  Google Scholar 

  • Lin AM, Rini BI, Weinberg V, Fong K, Ryan CJ, Rosenberg JE et al. (2006). A phase II trial of imatinib mesylate in patients with biochemical relapse of prostate cancer after definitive local therapy. BJU Int 98: 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Loizos N, Xu Y, Huber J, Liu M, Lu D, Finnerty B et al. (2005). Targeting the platelet-derived growth factor receptor α with a neutralizing human monoclonal antibody that inhibits the growth of tumor xenografts: implications as a potential therapeutic target. Mol Cancer Ther 4: 369–379.

    CAS  PubMed  Google Scholar 

  • Mathew P, Thall PF, Bucana CD, Oh WK, Morris MJ, Jones DM et al. (2007). Platelet-derived growth factor receptor inhibition and chemotherapy for castration-resistant prostate cancer with bone metastases. Clin Cancer Res 13: 5816–5824.

    Article  CAS  PubMed  Google Scholar 

  • Mathew P, Thall PF, Jones D, Perez C, Bucana C, Troncoso P et al. (2004). Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J Clin Oncol 22: 3323–3329.

    Article  CAS  PubMed  Google Scholar 

  • Mundy GR . (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2: 584–593.

    Article  CAS  PubMed  Google Scholar 

  • Nemeth JA, Harb JF, Barroso Jr U, He Z, Grignon DJ, Cher ML . (1999). Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 59: 1987–1993.

    CAS  PubMed  Google Scholar 

  • Paget S . (1889). The distribution of secondary growths in cancer of the breast. Lancet 1: 571–573.

    Article  Google Scholar 

  • Rao K, Goodin S, Levitt MJ, Dave N, Shih WJ, Lin Y et al. (2005). A phase II trial of imatinib mesylate in patients with prostate specific antigen progression after local therapy for prostate cancer. Prostate 62: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD . (2004). Mechanisms of bone metastasis. N Engl J Med 350: 1655–1664.

    Article  CAS  PubMed  Google Scholar 

  • Ross RW, Oh WK, Hurwitz M, D’Amico AV, Richie JP, Kantoff PW . (2006). Neoplasm of the prostate. In: Holland-Frei (ed). Cancer Medicine. BC Decker Inc. publisher, pp 1431–1461.

    Google Scholar 

  • Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ et al. (2005). Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146: 1727–1736.

    Article  CAS  PubMed  Google Scholar 

  • Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A . (2004). CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 64: 4693–4698.

    Article  CAS  PubMed  Google Scholar 

  • Thorarinsdottir HK, Santi M, McCarter R, Rushing EJ, Cornelison R, Jales A et al. (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin Cancer Res 14: 3386–3394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A et al. (2005). Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65: 7682–7690.

    Article  CAS  PubMed  Google Scholar 

  • Vantyghem SA, Allan AL, Postenka CO, Al-Katib W, Keeney M, Tuck AB et al. (2005). A new model for lymphatic metastasis: development of a variant of the MDA-MB-468 human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis 22: 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Stearns ME . (1991). Isolation and characterization of PC-3 human-prostatic tumor sublines which preferentially metastasize to select organs in SCID mice. Differentiation 48: 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M et al. (2002). Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160: 1143–1153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarden Y, Escobedo JA, Kuang WJ, Yang-Feng TL, Daniel TO, Tremble PM et al. (1986). Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323: 226–232.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The cDNA for human PDGFRα was a kind gift of Dr Carl-Henrik Heldin (Ludwig Institute for Cancer Research, Uppsala, Sweden). We thank Dr Olimpia Meucci (Department of Pharmacology and Physiology) for critically reading the manuscript and helpful discussion, Dr Mark Stearns (Department of Pathology and Laboratory Medicine) for helpful discussion, Dr Gregg Johannes (Department of Pathology and Laboratory Medicine) for help with the PDGFRα-expressing vector, Mr Michael Amatangelo for his contribution to the immuno-detection of PDGFRα in human tissues and Dr Nick Loizos (ImClone Systems Inc., New York, NY, USA) for kindly providing the IMC-3G3 antibody. This study was supported in part by the NIH Grant GM067892 to AF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fatatis.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, M., Jamieson, W., Dolloff, N. et al. The α-receptor for platelet-derived growth factor as a target for antibody-mediated inhibition of skeletal metastases from prostate cancer cells. Oncogene 28, 412–421 (2009). https://doi.org/10.1038/onc.2008.390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.390

Keywords

This article is cited by

Search

Quick links