Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes

Abstract

Overexpression of the epidermal growth factor receptor (EGFR) in human papillomavirus type 16-immortalized human keratinocytes (HKc) is caused by the viral oncoprotein E6, which targets p53 for degradation. We have previously observed that expression of p53 RNAi in normal HKc is associated with an increase in EGFR mRNA and protein. We now report that p53 RNAi induces EGFR promoter activity up to approximately 10-fold in normal HKc, and this effect does not require intact p53 binding sites on the EGFR promoter. Exogenous wild-type p53 inhibits the EGFR promoter at low levels, and activates it at higher concentrations. Yin Yang 1 (YY1), which negatively regulates p53, induces EGFR promoter activity, and this effect is augmented by p53 RNAi. Intact p53 binding sites on the EGFR promoter are not required for activation by YY1. In addition, Sp1 and YY1 synergistically induce the EGFR promoter in normal HKc, indicating that Sp1 may recruit YY1 as a co-activator. Wild-type p53 suppressed Sp1- and YY1-mediated induction of the EGFR promoter. We conclude that acute loss of p53 in normal HKc induces EGFR expression by a mechanism that involves YY1 and Sp1 and does not require p53 binding to the EGFR promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ai W, Narahari J, Roman A . (2000). Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J Virol 74: 5198–5205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akerman GS, Tolleson WH, Brown KL, Zyzak LL, Mourateva E, Engin TS et al. (2001). Human papillomavirus type 16 E6 and E7 cooperate to increase epidermal growth factor receptor (EGFR) mRNA levels, overcoming mechanisms by which excessive EGFR signaling shortens the life span of normal human keratinocytes. Cancer Res 61: 3837–3843.

    CAS  PubMed  Google Scholar 

  • Arteaga CL . (2002). Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7 (Suppl 4): 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin A, Pirisi L, Creek KE . (2004). NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression. J Virol 78: 3953–3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb SP, Munoz RM, Brown DR, Subler MA, Deb S . (1994). Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene 9: 1341–1349.

    CAS  PubMed  Google Scholar 

  • Dykxhoorn DM, Lieberman J . (2005). The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56: 401–423.

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Akopyan G, Garban H, Bonavida B . (2006). Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25: 1125–1142.

    Article  CAS  PubMed  Google Scholar 

  • Gronroos E, Terentiev AA, Punga T, Ericsson J . (2004). YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc Natl Acad Sci USA 101: 12165–12170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haley J, Whittle N, Bennet P, Kinchington D, Ullrich A, Waterfield M . (1987). The human EGF receptor gene: structure of the 110 kb locus and identification of sequences regulating its transcription. Oncogene Res 1: 375–396.

    CAS  PubMed  Google Scholar 

  • Hu G, Liu W, Mendelsohn J, Ellis LM, Radinsky R, Andreeff M et al. (1997). Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J Natl Cancer Inst 89: 1271–1276.

    Article  CAS  PubMed  Google Scholar 

  • Innocente SA, Lee JM . (2005). p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett 579: 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Xu YH, Stratton RH, Roe BA, Merlino GT, Pastan I . (1985). Characterization and sequence of the promoter region of the human epidermal growth factor receptor gene. Proc Natl Acad Sci USA 82: 4920–4924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AC, Murphy BA, Matelis CM, Rubinstein Y, Piebenga EC, Akers LM et al. (2000). Activator protein-1 mediates induced but not basal epidermal growth factor receptor gene expression. Mol Med 6: 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama R, Merlino GT, Pastan I . (1988). Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. J Biol Chem 263: 6329–6336.

    CAS  PubMed  Google Scholar 

  • Kawada H, Nishiyama C, Takagi A, Tokura T, Nakano N, Maeda K et al. (2005). Transcriptional regulation of ATP2C1 gene by Sp1 and YY1 and reduced function of its promoter in Hailey-Hailey disease keratinocytes. J Invest Dermatol 124: 1206–1214.

    Article  CAS  PubMed  Google Scholar 

  • Kilic G, Cardillo M, Ozdemirli M, Arun B . (1999). Human papillomavirus 18 oncoproteins E6 and E7 enhance irradiation- and chemotherapeutic agent-induced apoptosis in p53 and Rb mutated cervical cancer cell lines. Eur J Gynaecol Oncol 20: 167–171.

    CAS  PubMed  Google Scholar 

  • Lee JS, Galvin KM, Shi Y . (1993). Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc Natl Acad Sci USA 90: 6145–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE et al. (1996). Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 16: 6009–6019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur SP, Mathur RS, Rust PF, Young RC . (2001). Human papilloma virus (HPV)-E6/E7 and epidermal growth factor receptor (EGF-R) protein levels in cervical cancer and cervical intraepithelial neoplasia (CIN). Am J Reprod Immunol 46: 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Pirisi L, Creek KE, Doniger J, DiPaolo JA . (1988). Continuous cell lines with altered growth and differentiation properties originate after transfection of human keratinocytes with human papillomavirus type 16 DNA. Carcinogenesis 9: 1573–1579.

    Article  CAS  PubMed  Google Scholar 

  • Pirisi L, Yasumoto S, Feller M, Doniger J, DiPaolo JA . (1987). Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol 61: 1061–1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikh MS, Carrier F, Johnson AC, Ogdon SE, Fornace Jr AJ . (1997). Identification of an additional p53-responsive site in the human epidermal growth factor receptor gene promoter. Oncogene 15: 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Lee JS, Galvin KM . (1997). Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta 1332: F49–F66.

    CAS  PubMed  Google Scholar 

  • Sui G, Affar el B, Shi Y, Brignone C, Wall NR, Yin P et al. (2004). Yin Yang 1 is a negative regulator of p53. Cell 117: 859–872.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bolotin D, Chu DH, Polak L, Williams T, Fuchs E . (2006). AP-2alpha: a regulator of EGF receptor signaling and proliferation in skin epidermis. J Cell Biol 172: 409–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Thompson KL, Shephard LB, Hudson LG, Gill GN . (1993). T3 receptor suppression of Sp1-dependent transcription from the epidermal growth factor receptor promoter via overlapping DNA-binding sites. J Biol Chem 268: 16065–16073.

    CAS  PubMed  Google Scholar 

  • Yakovleva T, Kolesnikova L, Vukojevic V, Gileva I, Tan-No K, Austen M et al. (2004). YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun 318: 615–624.

    Article  CAS  PubMed  Google Scholar 

  • Yao YL, Yang WM, Seto E . (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 21: 5979–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B . (1999). Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 96: 14517–14522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH et al. (2000). Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14: 981–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zyzak LL, MacDonald LM, Batova A, Forand R, Creek KE, Pirisi L . (1994). Increased levels and constitutive tyrosine phosphorylation of the epidermal growth factor receptor contribute to autonomous growth of human papillomavirus type 16 immortalized human keratinocytes. Cell Growth Differ 5: 537–547.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Omar Bagasra for discussion and advice in the construction and use of siRNA. This work was supported by grants from the National Institutes of Health: R01CA89502 and P20CA096427 to KEC, and EXPORT Center P20MD001770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Pirisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bheda, A., Creek, K. & Pirisi, L. Loss of p53 induces epidermal growth factor receptor promoter activity in normal human keratinocytes. Oncogene 27, 4315–4323 (2008). https://doi.org/10.1038/onc.2008.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.65

Keywords

This article is cited by

Search

Quick links