Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis

Abstract

Hallmarks of malignant melanoma are its propensity to metastasize and its resistance to treatment, giving patients with advanced disease a poor prognosis. The transition of melanoma from non-invasive radial growth phase (RGP) to invasive and metastatically competent vertical growth phase (VGP) is a major step in tumor progression, yet the mechanisms governing this transformation are unknown. Matrix metalloproteinase-1 (MMP-1) is highly expressed by VGP melanomas, and is thought to contribute to melanoma progression by degrading type I collagen within the skin to facilitate melanoma invasion. Protease activated receptor-1 (PAR-1) is activated by MMP-1, and is also expressed by VGP melanomas. However, the effects of MMP-1 signaling through PAR-1 have not been examined in melanoma. Here, we demonstrate that an MMP-1/PAR-1 signaling axis exists in VGP melanoma, and is necessary for melanoma invasion. Introduction of MMP-1 into RGP melanoma cells induced gene expression associated with tumor progression and promoted invasion in vitro, and enhanced tumor growth and conferred metastatic capability in vivo. This study demonstrates that both the type I collagenase and PAR-1 activating functions of MMP-1 are required for melanoma progression, and suggests that MMP-1 may be a major contributor to the transformation of melanoma from non-invasive to malignant disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agarwal A, Covic L, Sevigny LM, Kaneider NC, Lazarides K, Azabdaftari G et al. (2008). Targeting a metalloprotease-PAR1 signaling system with cell-penetrating pepducins inhibits angiogenesis, ascites, and progression of ovarian cancer. Mol Cancer Ther 7: 2746–2757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airola K, Karonen T, Vaalamo M, Lehti K, Lohi J, Kariniemi A-L et al. (1999). Expression of collagenase-1 and -3 and their inhibitors TIMP-1 and -3 correlates with the level of invasion in malignant melanomas. Br J Cancer 80: 733–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora P, Ricks TK, Trejo J . (2007). Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J Cell Sci 120: 921–928.

    Article  CAS  PubMed  Google Scholar 

  • Balch C, Soong S-J, Atkins M, Buzaid A, Thompson J . (2004). An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin 54: 131–149.

    Article  PubMed  Google Scholar 

  • Berwick M, Erdei E, Hay J . (2009). Melanoma epidemiology and public health. Dermatol Clin 27: 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn JS, Brinckerhoff CE . (2008). Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Path 173: 1736–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackburn JS, Rhodes CH, Coon CI, Brinckerhoff CE . (2007). RNA interference inhibition of matrix metalloproteinase-1 prevents melanoma metastasis by reducing tumor collagenase activity and angiogenesis 10.1158/0008-5472.CAN-07-1791. Cancer Res 67: 10849–10858.

    Article  CAS  PubMed  Google Scholar 

  • Boire A, Covic L, Agarvai A, Jacques S, Sherifi S, Kuliopulos A . (2005). PAR1 is a matrix metalloproteinase-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120: 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Breslow A . (1970). Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 172: 902–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark W, Ainsworth A, Bernardino E, Yang C, Mihm C, Reed R . (1975). The developmental biology of primary human maligant melanomas. Semin Oncol 2: 83–103.

    PubMed  Google Scholar 

  • Curran S, Murray GI . (2000). Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36: 1621–1630.

    Article  CAS  PubMed  Google Scholar 

  • Depasquale I, Thompson WD . (2008). Prognosis in human melanoma: PAR-1 expression is superior to other coagulation components and VEGF. Histopathology 52: 500–509.

    Article  CAS  PubMed  Google Scholar 

  • Durko M, Navab R, Shibata H, Brodt P . (1998). Suppression of basement membrane type IV collagen degradation and cell invasion in human melanoma cells expressing an antisense RNA for MMP-1. Biochim Biophys Acta 1356: 271–280.

    Article  Google Scholar 

  • Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz B-Z, Gutwein P et al. (2001). Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 276: 10952–10962.

    Article  CAS  PubMed  Google Scholar 

  • Fingleton B . (2006). Maxtrix metalloproteinases: roles in cancer and metastasis. Front Biosci 11: 479–491.

    Article  CAS  PubMed  Google Scholar 

  • Gray-Schopfer V, Wellbrock C, Marais R . (2007). Melanoma biology and new targeted therapy. Nature 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Haluska F, Ibrahim N . (2006). Therapeutic targets in melanoma: map kinase pathway. Curr Oncol Rep 8: 400–405.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann U, Houben R, Brocker E, Becker J . (2005). Role of matrix metalloproteinases in melanoma cell invasion. Biochimie 87: 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann U, Westphal J, van Muijen G, Ruiter D . (2000). Matrix metalloproteinases in human melanoma. J Invest Dermatol 115: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Huntington JT, Shields JM, Der CJ, Wyatt CA, Benbow U, Slingluff CL et al. (2004). Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells. J Bio Chem 279: 33168–33176.

    Article  CAS  Google Scholar 

  • Iida J, Wilhelmson KL, Price MA, Wilson CM, Pei D, Furcht LT et al. (2004). Membrane type-1 matrix metalloproteinase promotes human melanoma invasion and growth. J Investig Dermatol 122: 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Ogura T, Tatemichi M, Fujisawa H, Otsuka F, Esumi H . (2003). Induction of matrix metalloproteinase gene transcription by nitric oxide and mechanisms of MMP-1 gene induction in human melanoma cell lines. Int J Canc 103: 161–168.

    Article  CAS  Google Scholar 

  • Leiter U, Friedegund M, Shittek B, Garbe C . (2004). The natural course of cutaneous melanoma. J Surg Onc 86: 172–178.

    Article  Google Scholar 

  • Loffek S, Zigrino P, Angel P, Anwald B, Krieg T, Mauch C . (2005). High invasive melanoma cells induce matrix metalloproteinase-1 synthesis in fibroblasts by interleukin-1a and basic fibroblast growth factor-mediated mechansims. J Invest Dermatol 124: 638–645.

    Article  PubMed  Google Scholar 

  • Ludeman MJ, Kataoka H, Srinivasan Y, Esmon NL, Esmon CT, Coughlin SR . (2005). PAR1 cleavage and signaling in response to activated protein C and thrombin. J Biol Chem 280: 13122–13128.

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R . (2001). Proteinase-activated receptors. Pharmacol Rev 53: 245–282.

    CAS  PubMed  Google Scholar 

  • Martin C, Mahon G, Klinger M, Kay R, Symons M, Der C et al. (2001). The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene 20: 1953–1963.

    Article  CAS  PubMed  Google Scholar 

  • Massi D, Naldini A, Ardinghi C, Carraro F, Franchi A, Paglierani M et al. (2005). Expression of protease-activated receptors 1 and 2 in melanocytic nevi and malignant melanoma. Hum Pathol 36: 676–685.

    Article  CAS  PubMed  Google Scholar 

  • Nierodzik ML, Chen K, Takeshita K, Li J-J, Huang Y-Q, Feng X-S et al. (1998). Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 92: 3694–3700.

    CAS  PubMed  Google Scholar 

  • Nikkola J, Vihinen P, Vuoristo M-S, Kellokumpu-Lehtinen P, Kahari V-M, Pyrhonen S . (2005). High serum levels of matrix metalloproteinase-9 and matrix metalloproteinase-1 are associated with rapid progression in patients with metastatic melanoma. Clin Cancer Res 11: 5158–5166.

    Article  CAS  PubMed  Google Scholar 

  • Ntayi C, Lorimier S, Berthier-Vergnes O, Hornebeck W, Bernard P . (2001). Cumulative influence of matrix metalloproteinase-1 and -2 in the migration of melanoma cells within three-dimensional type I collagen lattices. Exp Cell Res 270: 110–118.

    Article  CAS  PubMed  Google Scholar 

  • Ornstein D, Zacharski L . (2001). Treatment of cancer with anticoagulants: rationale for treatment of melanoma. Int J Hematol 72: 157–161.

    Article  Google Scholar 

  • Petrella BL, Lohi J, Brinckerhoff CE . (2005). Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2a in von-Hippel-Lindau renal cell carcinoma. Oncogene 24244: 1043–1052.

    Article  Google Scholar 

  • Rothhammer T, Braig S, Bosserhoff A-K . (2008). Bone morphogenetic proteins induce expression of metalloproteinases in melanoma cells and fibroblasts. Eur J Cancer 44: 2526–2534.

    Article  CAS  PubMed  Google Scholar 

  • Salah Z, Maoz M, Pokroy E, Lotem M, Bar-Shavit R, Uziely B . (2007). Protease-activated receptor-1 (hPar1), a survival factor eliciting tumor progression. Mol Cancer Res 5: 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Enghild J, Morodomi T, Salvesen G, Nagase H . (1990). Mechanisms of actvation of tissue procollagenase by matrix metalloproteinase-3 (stromelysin). Biochemistry 29: 10261–10270.

    Article  CAS  PubMed  Google Scholar 

  • Tellez C, Bar-Eli M . (2003). Role and regulation of the thrombin receptor (PAR-1) in human melanoma. Oncogene 22: 3130–3137.

    Article  CAS  PubMed  Google Scholar 

  • Tellez CS, Davis DW, Prieto VG, Gershenwald JE, Johnson MM, McCarty MF et al. (2006). Quantitative analysis of melanocytic tissue array reveals inverse correlation between activator protein-2[alpha] and protease-activated receptor-1 expression during melanoma progression. J Invest Dermatol 127: 387–393.

    Article  PubMed  Google Scholar 

  • Ueda Y, Richmond A . (2006). NF-kappa B activation in melanoma. Pigment Cell Res 19: 112–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villares GJ, Zigler M, Wang H, Melnikova VO, Wu H, Friedman R et al. (2008). Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Cancer Res 68: 9078–9086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt CA, Geoghegan JC, Brinckerhoff CE . (2005). Short hairpin RNA-mediated inhibition of matrix metalloproteinase-1 in MDA-231 cells: effects on matrix destruction and tumor growth. Cancer Res 65: 11101–11108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shaun Coughlin (University of California, San Francisco, CA, USA) for his generous gift of the AP–PAR-1 construct. This work was supported by NIH grants CA-77267 and AR-26599 (to CEB), NIH grant T32-AI07363 (to JSB) and the Prouty Pilot Grant by the Friends of the Norris Cotton Cancer Center (to CEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C E Brinckerhoff.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blackburn, J., Liu, I., Coon, C. et al. A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene 28, 4237–4248 (2009). https://doi.org/10.1038/onc.2009.272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.272

Keywords

This article is cited by

Search

Quick links