Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts

Abstract

The Hedgehog (Hh) pathway contributes to prostate cancer growth and progression. The presence of robust Sonic Hedgehog (Shh) expression in both normal prostate and localized cancer challenged us to explain the unique growth-promoting effect in cancer. We show here that paracrine Hh signaling exerts a non-cell autonomous effect on xenograft tumor growth and that Hh pathway activation in myofibroblasts alone is sufficient to stimulate tumor growth. Nine genes regulated by Hh in the mesenchyme of the developing prostate were found to be regulated in the stroma of Hh overexpressing xenograft tumors. Correlation analysis of gene expression in matched specimens of benign and malignant human prostate tissue revealed a partial five-gene fingerprint of Hh-regulated expression in stroma of all cancers and the complete nine-gene fingerprint in the subset of tumors exhibiting a reactive stroma. No expression fingerprint was observed in benign tissues. We conclude that changes in the prostate stroma due to association with cancer result in an altered transcriptional response to Hh that mimics the growth-promoting actions of the fetal mesenchyme. Patients with an abundance of myofibroblasts in biopsy tissue may comprise a subgroup that will exhibit a particularly good response to anti-Hh therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bai CB, Auerbach W, Lee JS, Stephen D, Joyner AL . (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129: 4753–4761.

    Article  CAS  Google Scholar 

  • Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H et al. (2006). Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem 281: 19320–19326.

    Article  CAS  Google Scholar 

  • Bierhoff E, Walljasper U, Hofmann D, Vogel J, Wernert N, Pfeifer U . (1997). Morphological analogies of fetal prostate stroma and stromal nodules in BPH. Prostate 31: 234–240.

    Article  CAS  Google Scholar 

  • Fan L, Pepicelli CV, Dibble CC, Catbagan W, Zarycki JL, Laciak R et al. (2004). Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145: 3961–3970.

    Article  CAS  Google Scholar 

  • Gustin MP, Paultre CZ, Randon J, Bricca G, Cerutti C . (2008). Functional meta-analysis of double connectivity in gene coexpression networks in mammals. Physiol Genomics 34: 34–41.

    Article  CAS  Google Scholar 

  • Hui CC, Joyner AL . (1993). A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3: 241–246.

    Article  CAS  Google Scholar 

  • Janik P, Briand P, Hartmann NR . (1975). The effect of estrone-progesterone treatment on cell proliferation kinetics of hormone-dependent GR mouse mammary tumors. Cancer Res 35: 3698–3704.

    CAS  PubMed  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712.

    Article  CAS  Google Scholar 

  • Kelleher FC, Fennelly D, Rafferty M . (2006). Common critical pathways in embryogenesis and cancer. Acta Oncol 45: 375–388.

    Article  CAS  Google Scholar 

  • Lauth M, Bergstrom A, Shimokawa T, Toftgard R . (2007). Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104: 8455–8460.

    Article  CAS  Google Scholar 

  • Lauth M, Toftgard R . (2007a). Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle 6: 2458–2463.

    Article  CAS  Google Scholar 

  • Lauth M, Toftgard R . (2007b). The Hedgehog pathway as a drug target in cancer therapy. Curr Opin Investig Drugs 8: 457–461.

    CAS  PubMed  Google Scholar 

  • Levitt RJ, Zhao Y, Blouin MJ, Pollak M . (2007). The hedgehog pathway inhibitor cyclopamine increases levels of p27, and decreases both expression of IGF-II and activation of Akt in PC-3 prostate cancer cells. Cancer Lett 255: 300–306.

    Article  CAS  Google Scholar 

  • Lipinski RJ, Gipp JJ, Zhang J, Doles JD, Bushman W . (2006). Unique and complimentary activities of the Gli transcription factors in Hedgehog signaling. Exp Cell Res 312: 1925–1938.

    Article  CAS  Google Scholar 

  • Lum L, Beachy PA . (2004). The Hedgehog response network: sensors, switches, and routers. Science 304: 1755–1759.

    Article  CAS  Google Scholar 

  • McCarthy FR, Brown AJ . (2008). Autonomous Hedgehog signalling is undetectable in PC-3 prostate cancer cells. Biochem Biophys Res Commun 373: 109–112.

    Article  CAS  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Barrette TR, Ghosh D, Chinnaiyan AM . (2005). Mining for regulatory programs in the cancer transcriptome. Nat Genet 37: 579–583.

    Article  CAS  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. (2007a). Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia 9: 166–180.

    Article  CAS  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Tomlins SA, Mahavisno V, Kasper N, Varambally R et al. (2007b). Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9: 443–454.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  Google Scholar 

  • Roessler E, Ermilov AN, Grange DK, Wang A, Grachtchouk M, Dlugosz AA et al. (2005). A previously unidentified amino-terminal domain regulates transcriptional activity of wild-type and disease-associated human GLI2. Hum Mol Genet 14: 2181–2188.

    Article  CAS  Google Scholar 

  • Sanchez P, Hernandez AM, Stecca B, Kahler AJ, DeGueme AM, Barrett A et al. (2004). Inhibition of prostate cancer proliferation by interference with Sonic Hedgehog-Gli1 signaling. Proc Natl Acad Sci USA 101: 12561–12566.

    Article  CAS  Google Scholar 

  • Schimmang T, van der Hoeven F, Ruther U . (1993). Gli3 expression is affected in the morphogenetic mouse mutants add and Xt. Prog Clin Biol Res 383A: 153–161.

    CAS  PubMed  Google Scholar 

  • Schwarze SR, Luo J, Isaacs WB, Jarrard DF . (2005). Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate 64: 67–74.

    Article  CAS  Google Scholar 

  • Shaw A, Papadopoulos J, Johnson C, Bushman W . (2006). Isolation and characterization of an immortalized mouse urogenital sinus mesenchyme cell line. Prostate 66: 1347–1358.

    Article  CAS  Google Scholar 

  • Sheng T, Li C, Zhang X, Chi S, He N, Chen K et al. (2004). Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 3: 29.

    Article  Google Scholar 

  • Stuart JM, Segal E, Koller D, Kim SK . (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science 302: 249–255.

    Article  CAS  Google Scholar 

  • Tuxhorn JA, Ayala GE, Rowley DR . (2001). Reactive stroma in prostate cancer progression. J Urol 166: 2472–2483.

    Article  CAS  Google Scholar 

  • Tuxhorn JA, Ayala GE, Smith MJ, Smith VC, Dang TD, Rowley DR . (2002). Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8: 2912–2923.

    CAS  Google Scholar 

  • Yanagisawa N, Li R, Rowley D, Liu H, Kadmon D, Miles BJ et al. (2008). Reprint of: Stromogenic prostatic carcinoma pattern (carcinomas with reactive stromal grade 3) in needle biopsies predicts biochemical recurrence-free survival in patients after radical prostatectomy. Hum Pathol 39: 282–291.

    Article  Google Scholar 

  • Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al. (2008). A paracrine requirement for hedgehog signalling in cancer. Nature 455: 406–410.

    Article  CAS  Google Scholar 

  • Yu M, Gipp J, Yoon JW, Iannaccone P, Walterhouse D, Bushman W . (2009). Sonic hedgehog-responsive genes in the fetal prostate. J Biol Chem 284: 5620–5629.

    Article  CAS  Google Scholar 

  • Zhang J, Lipinski R, Shaw A, Gipp J, Bushman W . (2007). Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines. J Urol 177: 1179–1185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alejandro Muñoz, PhD, and Glen Leverson, PhD, for assistance with statistical analysis. The Gli2-mutB expression construct was generously provided by Maximilian Muenke at NIH (Bethesda, MD, USA). This work was supported by the Department of Defense Prostate Cancer Program Graduate Training Award W81XWH-06-1-0060 (AS), Department of Defense Award W81XWH-04-1-0263 (WB), the NIDDK Award DK056238-06 (WB) and the Robert and Delores Schnoes Chair in Urologic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Bushman.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, A., Gipp, J. & Bushman, W. The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts. Oncogene 28, 4480–4490 (2009). https://doi.org/10.1038/onc.2009.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.294

Keywords

This article is cited by

Search

Quick links