Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells

Abstract

The ubiquitin-proteasome and lysosome-autophagy pathways are the two major intracellular protein degradation systems that work cooperatively to maintain homeostasis. Proteasome inhibitors (PIs) have clinical activity in hematological tumors, and inhibitors of autophagy are also being evaluated as potential antitumor therapies. In this study, we found that chemical PIs and small interfering RNA-mediated knockdown of the proteasome's enzymatic subunits promoted autophagosome formation, stimulated autophagic flux, and upregulated expression of the autophagy-specific genes (ATGs) (ATG5 and ATG7) in some human prostate cancer cells and immortalized mouse embryonic fibroblasts (MEFs). Upregulation of ATG5 and ATG7 only occurred in cells displaying PI-induced phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α), an important component of the unfolded protein responses. Furthermore, PIs did not induce autophagy or upregulate ATG5 in MEFs expressing a phosphorylation-deficient mutant form of eIF2α. Combined inhibition of autophagy and the proteasome induced an accumulation of intracellular protein aggregates reminiscent of neuronal inclusion bodies and caused more cancer cell death than blocking either degradation pathway alone. Overall, our data show that proteasome inhibition activates autophagy through a phospho-eIF2α-dependent mechanism to eliminate protein aggregates and alleviate proteotoxic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams J . (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5: 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117: 326–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KC . (2004). Bortezomib therapy for myeloma. Curr Hematol Rep 3: 65.

    PubMed  Google Scholar 

  • Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A . (2008). Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68: 1485–1494.

    Article  CAS  PubMed  Google Scholar 

  • Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L et al. (2007). Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110: 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al. (2005). A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8: 407–419.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P et al. (2008). Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 111: 1654–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D et al. (2007). Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171: 513–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fels DR, Ye J, Segan AT, Kridel SJ, Spiotto M, Olson M et al. (2008). Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res 68: 9323–9330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng J, Baba M, Nair U, Klionsky DJ . (2008). Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J Cell Biol 182: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AL . (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35: 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885–889.

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y . (2005). Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26: 1401–1410.

    CAS  PubMed  Google Scholar 

  • Iwata A, Riley BE, Johnston JA, Kopito RR . (2005). HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280: 40282–40292.

    Article  CAS  PubMed  Google Scholar 

  • Jiang HY, Wek RC . (2005). Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 280: 14189–14202.

    Article  CAS  PubMed  Google Scholar 

  • Kirkin V, McEwan DG, Novak I, Dikic I . (2009). A role for ubiquitin in selective autophagy. Mol Cell 34: 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S . (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726–734.

    Article  CAS  PubMed  Google Scholar 

  • Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H et al. (2007). ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14: 230–239.

    Article  CAS  PubMed  Google Scholar 

  • Krysko DV, Vanden Berghe T, Parthoens E, D'Herde K, Vandenabeele P . (2008). Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods Enzymol 442: 307–341.

    Article  PubMed  Google Scholar 

  • Levine B, Kroemer G . (2008). Autophagy in the pathogenesis of disease. Cell 132: 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConkey DJ, Zhu K . (2008). Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11: 164–179.

    Article  CAS  PubMed  Google Scholar 

  • Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M et al. (2007). NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110: 267–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ . (2008). Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T . (2007). How to interpret LC3 immunoblotting. Autophagy 3: 542–545.

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki ST, Carew JS, Dunner Jr K, Boise LH, Chiao PJ, Huang P et al. (2005). Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65: 11510–11519.

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Andtbacka RH, Dunner Jr K et al. (2006). Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66: 3773–3781.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, White E . (2004). Exploiting different ways to die. Genes Dev 18: 1223–1226.

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26: 9220–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447: 859–863.

    Article  CAS  PubMed  Google Scholar 

  • Reyes S, Rembao D, Sotelo J . (2001). The antimalarials quinacrine and chloroquine potentiate the transplacental carcinogenic effect of ethylnitrosourea on ependymal cells. Brain Tumor Pathol 18: 83–87.

    Article  CAS  PubMed  Google Scholar 

  • Ron D, Walter P . (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC . (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443: 780–786.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC . (2007). Autophagy induction rescues toxicity mediated by proteasome inhibition. Neuron 54: 854–856.

    Article  CAS  PubMed  Google Scholar 

  • Sakaki K, Wu J, Kaufman RJ . (2008). Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 283: 15370–15380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savarino A, Lucia MB, Giordano F, Cauda R . (2006). Risks and benefits of chloroquine use in anticancer strategies. Lancet Oncol 7: 792–793.

    Article  PubMed  Google Scholar 

  • Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A et al. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279: 18384–18391.

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Gao Z, Marks PA, Jiang X . (2004). Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101: 18030–18035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talloczy Z, Jiang W, Virgin HWt, Leib DA, Scheuner D, Kaufman RJ et al. (2002). Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99: 190–195.

    Article  CAS  PubMed  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG . (2006). Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34: 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Palam LR, Jiang L, Narasimhan J, Staschke KA, Wek RC . (2008). Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions. J Biol Chem 283: 7064–7073.

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Chan W, Heymach J, Wilkinson M, McConkey DJ . (2009). Control of HIF-1alpha expression by eIF2 alpha phosphorylation-mediated translational repression. Cancer Res 69: 1836–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Department of Defense Prostate Cancer Research Program (PC050288). The TEM studies were supported by the MD Anderson Cancer Center Support Grant (CA16672) to the High Resolution Electron Microscopy Facility. We also acknowledge Dr Woonyoung Choi and Maosheng Huang's help with the array data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J McConkey.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Dunner, K. & McConkey, D. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451–462 (2010). https://doi.org/10.1038/onc.2009.343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.343

Keywords

This article is cited by

Search

Quick links