Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes

Abstract

Ovarian clear cell carcinoma (OCCC) shows unique clinical features including an association with endometriosis and poor prognosis. We previously reported that the contents of endometriotic cysts, especially high concentrations of free iron, are a possible cause of OCCC carcinogenesis through iron-induced persistent oxidative stress. In this study, we conducted gene expression microarray analysis using 38 ovarian cancer cell lines and identified genes commonly expressed in both OCCC cell lines and clinical samples, which comprise an OCCC gene signature. The OCCC signature reproducibly predicts OCCC specimens in other microarray data sets, suggesting that this gene profile reflects the inherent biological characteristics of OCCC. The OCCC signature contains known markers of OCCC, such as hepatocyte nuclear factor-1β (HNF-1β) and versican (VCAN), and other genes that reflect oxidative stress. Expression of OCCC signature genes was induced by treatment of immortalized ovarian surface epithelial cells with the contents of endometriotic cysts, indicating that the OCCC signature is largely dependent on the tumor microenvironment. Induction of OCCC signature genes is at least in part epigenetically regulated, as we found hypomethylation of HNF-1β and VCAN in OCCC cell lines. This genome-wide study indicates that the tumor microenvironment induces specific gene expression profiles that contribute to the development of distinct cancer subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C et al. (2009a). Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann NY Acad Sci 1171: 59–76.

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB, Vijayalekshmi RV, Sung B . (2009b). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15: 425–430.

    Article  CAS  PubMed  Google Scholar 

  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F et al. (2008). A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 68: 5478–5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinton LA, Gridley G, Persson I, Baron J, Bergqvist A . (1997). Cancer risk after a hospital discharge diagnosis of endometriosis. Am J Obstet Gynecol 176: 572–579.

    Article  CAS  PubMed  Google Scholar 

  • Cattaruzza S, Schiappacassi M, Kimata K, Colombatti A, Perris R . (2004). The globular domains of PG-M/versican modulate the proliferation-apoptosis equilibrium and invasive capabilities of tumor cells. FASEB J 18: 779–781.

    Article  CAS  PubMed  Google Scholar 

  • Chan JK, Teoh D, Hu JM, Shin JY, Osann K, Kapp DS . (2008). Do clear cell ovarian carcinomas have poorer prognosis compared to other epithelial cell types? A study of 1411 clear cell ovarian cancers. Gynecol Oncol 109: 370–376.

    Article  PubMed  Google Scholar 

  • Cheng W, Liu J, Yoshida H, Rosen D, Naora H . (2005). Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 11: 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T . (2005). Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11: 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Escudero R, Paramio JM . (2008). Gene expression profiling as a tool for basic analysis and clinical application of human cancer. Mol Carcinog 47: 573–579.

    Article  CAS  PubMed  Google Scholar 

  • Gibson G . (2008). The environmental contribution to gene expression profiles. Nat Rev Genet 9: 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Harris AL . (2002). Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne VS, Huang WC, Neal CL, Tseng LM, Hung MC, Yu D . (2009). ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cip1 and chemoresistance in breast cancer cells. Mol Cancer Res 7: 592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN et al. (1997). Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17: 384–385.

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  PubMed  Google Scholar 

  • Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA . (2001). Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61: 3573–3577.

    CAS  PubMed  Google Scholar 

  • Itamochi H, Kigawa J, Terakawa N . (2008). Mechanisms of chemoresistance and poor prognosis in ovarian clear cell carcinoma. Cancer Sci 99: 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Nishiyama H, Kawanishi H, Matsui S, Guilford P, Reeve A et al. (2007). P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J Urol 178: 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Motoyama T . (2008). Overexpression of osteopontin in clear cell carcinoma of the ovary: close association with HNF-1beta expression. Histopathology 52: 682–688.

    Article  CAS  PubMed  Google Scholar 

  • Lau CK, Yang ZF, Ho DW, Ng MN, Yeoh GC, Poon RT et al. (2009). An Akt/hypoxia-inducible factor-1alpha/platelet-derived growth factor-BB autocrine loop mediates hypoxia-induced chemoresistance in liver cancer cells and tumorigenic hepatic progenitor cells. Clin Cancer Res 15: 3462–3471.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Garner EI, Welch WR, Berkowitz RS, Mok SC . (2007). Over-expression of hypoxia-inducible factor 1 alpha in ovarian clear cell carcinoma. Gynecol Oncol 106: 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Tashiro H, Katabuchi H, Begum M, Ohtake H, Kiyono T et al. (2005). Establishment of an immortalised human ovarian surface epithelial cell line without chromosomal instability. Br J Cancer 93: 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquez RT, Baggerly KA, Patterson AP, Liu J, Broaddus R, Frumovitz M et al. (2005). Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res 11: 6116–6126.

    Article  CAS  PubMed  Google Scholar 

  • Newton MA, Quintana FA, den Boon JA, Sengupta S, Ahlquist P . (2007). Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis. Ann Appl Stat 1: 85–106.

    Article  Google Scholar 

  • Osada R, Horiuchi A, Kikuchi N, Yoshida J, Hayashi A, Ota M et al. (2007). Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Hum Pathol 38: 1310–1320.

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  • Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ et al. (2007). Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67: 4605–4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Golub TR . (2002). DNA microarrays in clinical oncology. J Clin Oncol 20: 1932–1941.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg R, Ernberg I . (2005). Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). Proc Natl Acad Sci USA 102: 2052–2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, Diehn M et al. (2003). Gene expression patterns in ovarian carcinomas. Mol Biol Cell 14: 4376–4386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM et al. (2002). Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 62: 4722–4729.

    CAS  PubMed  Google Scholar 

  • Shimizu M, Nikaido T, Toki T, Shiozawa T, Fujii S . (1999). Clear cell carcinoma has an expression pattern of cell cycle regulatory molecules that is unique among ovarian adenocarcinomas. Cancer 85: 669–677.

    Article  CAS  PubMed  Google Scholar 

  • Skirnisdottir I, Seidal T, Karlsson MG, Sorbe B . (2005). Clinical and biological characteristics of clear cell carcinomas of the ovary in FIGO stages I-II. Int J Oncol 26: 177–183.

    PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T et al. (2000). Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 88: 2584–2589.

    Article  CAS  PubMed  Google Scholar 

  • Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. (2005). An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 37: 48–55.

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Kikuchi Y, Yaegashi N, Kuzuya K, Ueki M, Tsuda H et al. (2006). Clear cell carcinoma of the ovary: a retrospective multicentre experience of 254 patients with complete surgical staging. Br J Cancer 94: 1369–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto Y, Yano H, Momosaki S, Ogasawara S, Nishida N, Kojiro S et al. (2004). Antiproliferative effects of interferon-alphaCon1 on ovarian clear cell adenocarcinoma in vitro and in vivo. Clin Cancer Res 10: 7418–7426.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya A, Sakamoto M, Yasuda J, Chuma M, Ohta T, Ohki M et al. (2003). Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol 163: 2503–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushijima T . (2005). Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5: 223–231.

    Article  CAS  PubMed  Google Scholar 

  • van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Laird PW . (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Mandai M, Toyokuni S, Hamanishi J, Higuchi T, Takakura K et al. (2008). Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clin Cancer Res 14: 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Zaffanello M, Brugnara M, Franchini M, Fanos V . (2008). TCF2 gene mutation leads to nephro-urological defects of unequal severity: an open question. Med Sci Monit 14: RA78–RA86.

    CAS  PubMed  Google Scholar 

  • Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ et al. (2005). Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 11: 6422–6430.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Mandai.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, K., Mandai, M., Oura, T. et al. Identification of an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 29, 1741–1752 (2010). https://doi.org/10.1038/onc.2009.470

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.470

Keywords

This article is cited by

Search

Quick links