Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pharmacological reactivation of mutant p53: from protein structure to the cancer patient

Abstract

The p53 tumor suppressor pathway blocks tumor development by triggering apoptosis or cellular senescence in response to oncogenic stress. A large fraction of human tumors carry p53 mutations that disrupt DNA binding of p53 and transcriptional regulation of target genes. Reconstitution of wild-type p53 in vivo triggers rapid elimination of tumors. Therefore, pharmacological reactivation of mutant p53 is a promising strategy for novel cancer therapy. Several approaches for identification of small molecules that target mutant p53 have been applied, including rational design and screening of chemical libraries. The compound PhiKan083 binds with high affinity to a crevice created by the Y220C mutation in p53 and stabilizes the mutant protein. The compound PRIMA-1 (p53 reactivation and induction of massive apoptosis) restores wild-type conformation to mutant p53 by binding to the core and induces apoptosis in human tumor cells. The PRIMA-1 analog APR-246 is currently tested in a clinical trial. Successful development of mutant p53-reactivating anticancer drugs should have a major impact on the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bartek J, Bartkova J, Lukas J . (2007). DNA damage signalling guards against activated oncogenes and tumor progression. Oncogene 26: 7773–7779.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Krämer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR . (2008). Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 105: 10360–10365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CJ, Lain S, Verma CS, Fersht AR, Lane DP . (2009). Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9: 862–873.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J et al. (2005a). Restoration of tumor suppressor function to mutant p53 in human tumor cells by a maleimide analog. J Biol Chem 280: 30384–30391.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Lambert JMR, Hainaut P, Wiman KG . (2009). Mutant p53 rescue and modulation of p53 redox state. Cell Cycle 8: 2509–2517.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Zache N, Stridh H, Westman J, Bergman J, Selivanova G et al. (2005b). PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24: 3484–3491.

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, Maurer U, Green DR, Schuler M . (2003). Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4: 371–381.

    Article  CAS  PubMed  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Lozano G . (2009). 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9: 831–841.

    Article  CAS  PubMed  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F . (1999). Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510.

    Article  CAS  PubMed  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green DR, Kroemer G . (2009). Cytoplasmic functions of the tumour suppressor p53. Nature 458: 1127–1130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorgoulis VG, Vassiliou LVF, Karakaidos P, Zacharators P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Hainaut P, Wiman KG (eds). (2005). 25 Years of p53 Research. Springer: Dordrecht. ISBN 1-4020-2920-9.

    Book  Google Scholar 

  • Huang C, Zhang XM, Tavaluc RT, Hart LS, Dicker DT, Wang W et al. (2009). The combination of 5-fluorouracil plus p53 pathway restoration is associated with depletion of p53-deficient or mutant p53-expressing putative colon cancer stem cells. Cancer Biol Ther 8: 2186–2193.

    Article  PubMed  Google Scholar 

  • Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M et al. (2004). Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10: 1321–1328.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Ang HC, Fersht AR . (2006). Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA 103: 15056–15061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joerger AC, Fersht AR . (2008). Structural biology of the tumor suppressor p53. Annu Rev Biochem 77: 557–582.

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B et al. (1999). Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 96: 9112–9117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 102: 7665–7670.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M et al. (2008). Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13: 454–463.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert JMR, Gorzov P, Veprintsev DB, Söderqvist M, Segerbäck D, Bergman J et al. (2009). PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15: 376–388.

    Article  CAS  PubMed  Google Scholar 

  • Lambert JMR, Moshfegh A, Hainaut P, Wiman KG, Bykov VJN . (2010). Mutant p53 reactivation by PRIMA-1MET induces multiple signalling pathways converging on apoptosis. Oncogene 29: 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI . (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Mirza A, Wu Q, Wang L, McClanahan T, Bishop WR, Gheyas F et al. (2003). Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22: 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  • Muller PAJ, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell 139: 1327–1341.

    Article  PubMed  Google Scholar 

  • Nahi H, Lehmann S, Mollgard L, Bengtzen S, Selivanova G, Wiman KG et al. (2004). Effects of PRIMA-1 on chronic lymphocytic leukaemia cells with and without hemizygous p53 deletion. Br J Haematol 127: 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Nahi H, Merup M, Lehmann S, Bengtzen S, Mollgard L, Selivanova G et al. (2006). PRIMA-1 induces apoptosis in acute myeloid leukaemia cells with p53 gene deletion. Br J Haematol 132: 230–236.

    Article  CAS  PubMed  Google Scholar 

  • North S, Pluquet O, Maurici D, El-Ghissassi F, Hainaut P . (2002). Restoration of wild-type conformation and activity of a temperature-sensitive mutant of p53 (p53(V272M)) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1. Mol Carcinog 33: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Li C, Chen L, Sebti S, Chen J . (2003). Rescue of mutant p53 transcription function by ellipticine. Oncogene 22: 4478–4487.

    Article  CAS  PubMed  Google Scholar 

  • Rippin TM, Bykov VJN, Freund SMV, Selivanova G, Wiman KG, Fersht AR . (2002). Characterization of the p53 rescue drug CP-31398 in vitro and in living cells. Oncogene 21: 2119–2129.

    Article  CAS  PubMed  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S et al. (2008). Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci USA 105: 3933–3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Chen ZJ, Zilfou JT, Hopper E, Murphy M, Tew KD . (2001). Binding of the aminothiol WR-1065 to transcription factors influences cellular response to anticancer drugs. Pharmacol Exp Ther 297: 1067–1073.

    CAS  Google Scholar 

  • Shen J, Vakifahmetoglu H, Stridh H, Zhivotovsky B, Wiman KG . (2008). PRIMA-1MET induces mitochondrial apoptosis via activation of caspase-2. Oncogene 27: 6571–6580.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Weber JD . (2000). The ARF/p53 pathway. Curr Opin Genet Dev 10: 94–99.

    Article  CAS  PubMed  Google Scholar 

  • Shi LM, Myers TG, Fan Y, O'Connor PM, Paull KD, Friend SH et al. (1998). Mining the national cancer institute anticancer drug discovery database: cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol Pharmacol 53: 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60: 6788–6793.

    CAS  PubMed  Google Scholar 

  • Soussi T, Wiman KG . (2007). Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12: 303–312.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). in vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Takimoto R, Rastinejad F, El-Deiry WS . (2003). Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol 23: 2171–2181.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinmann L, Wischhusen J, Demma MJ, Naumann U, Roth P, Dasmahapatra B et al. (2008). A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 15: 718–729.

    Article  CAS  PubMed  Google Scholar 

  • Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M . (2003). CP-31398, a novel p53-stabilizing agent, induces p53 dependent and p53-independent glioma cell death. Oncogene 22: 8233–8245.

    Article  CAS  PubMed  Google Scholar 

  • Wiman KG . (2006). Strategies for therapeutic targeting of the 53 pathway in cancer. Cell Death Differ 13: 921–926.

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Qian W, Gruber A, Björkholm M, Chen Z, Zaid A et al. (2000). Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. Oncogene 19: 5123–5133.

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zache N, Lambert JMR, Rökaeus N, Shen J, Hainaut P, Bergman J et al. (2008a). Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol Oncol 2: 70–80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zache N, Lambert JM, Wiman KG, Bykov VJ . (2008b). PRIMA-1MET inhibits growth of mouse tumors carrying mutant p53. Cell Oncol 30: 411–418.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank the Swedish Cancer Society (Cancerfonden), the Swedish Medical Research Council (VR), the Cancer Society of Stockholm (Cancerföreningen) and the EU 6th Framework Program for generous support. I am cofounder and shareholder of Aprea AB, a company that develops p53-based cancer therapy, and member of its board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Wiman.

Ethics declarations

Competing interests

Professor Wiman is cofounder and shareholder of Aprea AB, a start-up company that develops p53-based cancer therapy. He is also a member of its board.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiman, K. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene 29, 4245–4252 (2010). https://doi.org/10.1038/onc.2010.188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.188

Keywords

This article is cited by

Search

Quick links