Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The activating mutation R201C in GNAS promotes intestinal tumourigenesis in ApcMin/+ mice through activation of Wnt and ERK1/2 MAPK pathways

Abstract

Somatically acquired, activating mutations of GNAS, the gene encoding the stimulatory G-protein Gsα subunit, have been identified in kidney, thyroid, pituitary, leydig cell, adrenocortical and, more recently, in colorectal tumours, suggesting that mutations such as R201C may be oncogenic in these tissues. To study the role of GNAS in intestinal tumourigenesis, we placed GNAS R201C under the control of the A33-antigen promoter (Gpa33), which is almost exclusively expressed in the intestines. The GNAS R201C mutation has been shown to result in the constitutive activation of Gsα and adenylate cyclase and to lead to the autonomous synthesis of cyclic adenosine monophosphate (cAMP). Gpa33tm1(GnasR201C)Wtsi/+ mice showed significantly elevated cAMP levels and a compensatory upregulation of cAMP-specific phosphodiesterases in the intestinal epithelium. GNAS R201C alone was not sufficient to induce tumourigenesis by 12 months, but there was a significant increase in adenoma formation when Gpa33tm1(GnasR201C)Wtsi/+ mice were bred onto an ApcMin/+ background. GNAS R201C expression was associated with elevated expression of Wnt and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) pathway target genes, increased phosphorylation of ERK1/2 MAPK and increased immunostaining for the proliferation marker Ki67. Furthermore, the effects of GNAS R201C on the Wnt pathway were additive to the inactivation of Apc. Our data strongly suggest that activating mutations of GNAS cooperate with inactivation of APC and are likely to contribute to colorectal tumourigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abud HE, Johnstone CN, Tebbutt NC, Heath JK . (2000). The murine A33 antigen is expressed at two distinct sites during development, the ICM of the blastocyst and the intestinal epithelium. Mech Dev 98: 111–114.

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Okamura S, Hussain SP, Nagashima M, He P, Shiseki M et al. (2003). Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63: 728–734.

    CAS  PubMed  Google Scholar 

  • Barbacid M . (1987). ras genes. Annu Rev Biochem 56: 779–827.

    Article  CAS  PubMed  Google Scholar 

  • Bos JL . (1989). ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  • Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM et al. (2003). K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 24: 703–710.

    Article  CAS  PubMed  Google Scholar 

  • Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS . (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310: 1504–1510.

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Liu JY, Cheng SN, Chang FW, Yuh YS . (2004). McCune-Albright syndrome associated with pituitary microadenoma: patient report. J Pediatr Endocrinol Metab 17: 365–369.

    Article  PubMed  Google Scholar 

  • Collins MT, Sarlis NJ, Merino MJ, Monroe J, Crawford SE, Krakoff JA et al. (2003). Thyroid carcinoma in the McCune-Albright syndrome: contributory role of activating Gs alpha mutations. J Clin Endocrinol Metab 88: 4413–4417.

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Beavo J . (2007). Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76: 481–511.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C et al. (1993). Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75: 631–639.

    Article  CAS  PubMed  Google Scholar 

  • Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN . (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107: 1183–1188.

    Article  CAS  PubMed  Google Scholar 

  • Fragoso MC, Domenice S, Latronico AC, Martin RM, Pereira MA, Zerbini MC et al. (2003). Cushing's syndrome secondary to adrenocorticotropin-independent macronodular adrenocortical hyperplasia due to activating mutations of GNAS1 gene. J Clin Endocrinol Metab 88: 2147–2151.

    Article  CAS  PubMed  Google Scholar 

  • Fragoso MC, Latronico AC, Carvalho FM, Zerbini MC, Marcondes JA, Araujo LM et al. (1998). Activating mutation of the stimulatory G protein (gsp) as a putative cause of ovarian and testicular human stromal Leydig cell tumors. J Clin Endocrinol Metab 83: 2074–2078.

    CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN et al. (2008). Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40: 600–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Happle R . (1986). The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet 29: 321–324.

    Article  CAS  PubMed  Google Scholar 

  • Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A et al. (2001). Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 107: R31–R36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ et al. (2006). A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 38: 794–800.

    Article  CAS  PubMed  Google Scholar 

  • Horvath A, Giatzakis C, Tsang K, Greene E, Osorio P, Boikos S et al. (2008). A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: a novel PDE8B isoform in human adrenal cortex. Eur J Hum Genet 16: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Houslay MD, Milligan G . (1997). Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 22: 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone CN, Tebbutt NC, Abud HE, White SJ, Stenvers KL, Hall NE et al. (2000). Characterization of mouse A33 antigen, a definitive marker for basolateral surfaces of intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 279: G500–G510.

    Article  CAS  PubMed  Google Scholar 

  • Kalfa N, Lumbroso S, Boulle N, Guiter J, Soustelle L, Costa P et al. (2006). Activating mutations of Gsalpha in kidney cancer. J Urol 176: 891–895.

    Article  CAS  PubMed  Google Scholar 

  • Kirk JM, Brain CE, Carson DJ, Hyde JC, Grant DB . (1999). Cushing's syndrome caused by nodular adrenal hyperplasia in children with McCune-Albright syndrome. J Pediatr 134: 789–792.

    Article  CAS  PubMed  Google Scholar 

  • Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS et al. (2000). Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26: 89–92.

    Article  CAS  PubMed  Google Scholar 

  • Kotoula V, Sozopoulos E, Litsiou H, Fanourakis G, Koletsa T, Voutsinas G et al. (2009). Mutational analysis of the BRAF, RAS and EGFR genes in human adrenocortical carcinomas. Endocr Relat Cancer 16: 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L . (1989). GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696.

    Article  CAS  PubMed  Google Scholar 

  • Levy DB, Smith KJ, Beazer-Barclay Y, Hamilton SR, Vogelstein B, Kinzler KW . (1994). Inactivation of both APC alleles in human and mouse tumors. Cancer Res 54: 5953–5958.

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Luo F, Brooks DG, Ye H, Hamoudi R, Poulogiannis G, Patek CE et al. (2007). Conditional expression of mutated K-ras accelerates intestinal tumorigenesis in Msh2-deficient mice. Oncogene 26: 4415–4427.

    Article  CAS  PubMed  Google Scholar 

  • Luo F, Brooks DG, Ye H, Hamoudi R, Poulogiannis G, Patek CE et al. (2009). Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways. Int J Exp Pathol 90: 558–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMahon HE . (1971). Albright's syndrome—thirty years later (polyostotic fibrous dysplasia). Pathol Annu 6: 81–146.

    CAS  PubMed  Google Scholar 

  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773: 1263–1284.

    Article  CAS  PubMed  Google Scholar 

  • Nishihara H, Hwang M, Kizaka-Kondoh S, Eckmann L, Insel PA . (2004). Cyclic AMP promotes cAMP-responsive element-binding protein-dependent induction of cellular inhibitor of apoptosis protein-2 and suppresses apoptosis of colon cancer cells through ERK1/2 and p38 MAPK. J Biol Chem 279: 26176–26183.

    Article  CAS  PubMed  Google Scholar 

  • Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A et al. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253: 665–669.

    Article  CAS  PubMed  Google Scholar 

  • Orner GA, Dashwood WM, Blum CA, Diaz GD, Li Q, Al-Fageeh M et al. (2002). Response of Apc(min) and A33 (delta N beta-cat) mutant mice to treatment with tea, sulindac, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mutat Res 506–507: 121–127.

    Article  PubMed  Google Scholar 

  • Palos-Paz F, Perez-Guerra O, Cameselle-Teijeiro J, Rueda-Chimeno C, Barreiro-Morandeira F, Lado-Abeal J et al. (2008). Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of toxic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain. Eur J Endocrinol 159: 623–631.

    Article  CAS  PubMed  Google Scholar 

  • Plagge A, Kelsey G, Germain-Lee EL . (2008). Physiological functions of the imprinted Gnas locus and its protein variants Galpha(s) and XLalpha(s) in human and mouse. J Endocrinol 196: 193–214.

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Clevers H . (2005). Self-renewal and cancer of the gut: two sides of a coin. Science 307: 1904–1909.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph JA, Poccia JL, Cohen MB . (2004). Cyclic AMP activation of the extracellular signal-regulated kinases 1 and 2: implications for intestinal cell survival through the transient inhibition of apoptosis. J Biol Chem 279: 14828–14834.

    Article  CAS  PubMed  Google Scholar 

  • Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V et al. (2006). Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci USA 103: 14122–14127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieber OM, Tomlinson IP, Lamlum H . (2000). The adenomatous polyposis coli (APC) tumour suppressor—genetics, function and disease. Mol Med Today 6: 462–469.

    Article  CAS  PubMed  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274.

    Article  PubMed  Google Scholar 

  • Stork PJ, Schmitt JM . (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12: 258–266.

    Article  CAS  PubMed  Google Scholar 

  • Stratakis CA . (2003). Genetics of adrenocortical tumors: gatekeepers, landscapers and conductors in symphony. Trends Endocrinol Metab 14: 404–410.

    Article  CAS  PubMed  Google Scholar 

  • Su H, Mills AA, Wang X, Bradley A . (2002). A targeted X-linked CMV-Cre line. Genesis 32: 187–188.

    Article  CAS  PubMed  Google Scholar 

  • Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C et al. (1992). Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256: 668–670.

    Article  CAS  PubMed  Google Scholar 

  • Taboada GF, Tabet AL, Naves LA, de Carvalho DP, Gadelha MR . (2009). Prevalence of gsp oncogene in somatotropinomas and clinically non-functioning pituitary adenomas: our experience. Pituitary 12: 165–169.

    Article  CAS  PubMed  Google Scholar 

  • Taketo MM . (2006). Mouse models of gastrointestinal tumors. Cancer Sci 97: 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M . (2004). Minireview: GNAS: normal and abnormal functions. Endocrinology 145: 5459–5464.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM . (1991). Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325: 1688–1695.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins JA, Sansom OJ . (2008). C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Res 68: 4963–4966.

    Article  CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science 318: 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  • Yang GC, Yao JL, Feiner HD, Roses DF, Kumar A, Mulder JE . (1999). Lipid-rich follicular carcinoma of the thyroid in a patient with McCune-Albright syndrome. Mod Pathol 12: 969–973.

    CAS  PubMed  Google Scholar 

  • Zhang T, Otevrel T, Gao Z, Gao Z, Ehrlich SM, Fields JZ et al. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 61: 8664–8667.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the DJ Adams Laboratory and the MJ Arends Laboratory is funded by Cancer Research UK (CR-UK) and the Wellcome Trust. We thank Dr Mattias Ernst for providing the Gpa33 targeting vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Adams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, C., McIntyre, R., Arends, M. et al. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in ApcMin/+ mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 29, 4567–4575 (2010). https://doi.org/10.1038/onc.2010.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.202

Keywords

This article is cited by

Search

Quick links