Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TLR9 triggering in Burkitt's lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification

Abstract

Endemic Burkitt's lymphoma (BL) is considered to preferentially develop in equatorial Africa because of chronic co-infection with Epstein–Barr virus (EBV) and the malaria pathogen Plasmodium falciparum. The interaction and contribution of both pathogens in the oncogenic process are poorly understood. Earlier, we showed that immune activation with a synthetic Toll-like receptor 9 (TLR9) ligand suppresses the initiation of EBV lytic replication in primary human B cells. In this study we investigate the mechanism involved in the suppression of EBV lytic gene expression in BL cell lines. We show that this suppression is dependent on functional TLR9 and MyD88 signaling but independent of downstream signaling elements, including phosphatidylinositol-3 kinase, mitogen-activated protein kinases and nuclear factor-κB. We identified TLR9 triggering resulting in histone modifications to negatively affect the activation of the promoter of EBV's master regulatory lytic gene BZLF1. Finally, we show that P. falciparum hemozoin, a natural TLR9 ligand, suppresses induction of EBV lytic gene expression in a dose-dependent manner. Thus, we provide evidence for a possible interaction between P. falciparum and EBV at the B-cell level and the mechanism involved in suppressing lytic and thereby reinforcing latent EBV that has unique oncogenic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alazard N, Gruffat H, Hiriart E, Sergeant A, Manet E . (2003). Differential hyperacetylation of histones H3 and H4 upon promoter-specific recruitment of EBNA2 in Epstein-Barr virus chromatin. J Virol 77: 8166–8172.

    Article  CAS  Google Scholar 

  • Ashman RF, Goeken JA, Drahos J, Lenert P . (2005). Sequence requirements for oligodeoxyribonucleotide inhibitory activity. Int Immunol 17: 411–420.

    Article  CAS  Google Scholar 

  • Berger C, Day P, Meier G, Zingg W, Bossart W, Nadal D . (2001). Dynamics of Epstein-Barr virus DNA levels in serum during EBV-associated disease. J Med Virol 64: 505–512.

    Article  CAS  Google Scholar 

  • Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R . (2003). NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77: 8532–8540.

    Article  CAS  Google Scholar 

  • Chene A, Donati D, Guerreiro-Cacais AO, Levitsky V, Chen Q, Falk KI et al. (2007). A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog 3: e80.

    Article  Google Scholar 

  • Coban C, Igari Y, Yagi M, Reimer T, Koyama S, Aoshi T et al. (2009). Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe 7: 50–61.

    Article  Google Scholar 

  • Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S et al. (2005). Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201: 19–25.

    Article  CAS  Google Scholar 

  • Cohen JI . (2000). Epstein-Barr virus infection. N Engl J Med 343: 481–492.

    Article  CAS  Google Scholar 

  • Countryman JK, Gradoville L, Miller G . (2008). Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol 82: 4706–4719.

    Article  CAS  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB . (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370: 737–749.

    Article  CAS  Google Scholar 

  • di Renzo L, Altiok A, Klein G, Klein E . (1994). Endogenous TGF-beta contributes to the induction of the EBV lytic cycle in two Burkitt lymphoma cell lines. Int J Cancer 57: 914–919.

    Article  CAS  Google Scholar 

  • Duramad O, Fearon KL, Chang B, Chan JH, Gregorio J, Coffman RL et al. (2005). Inhibitors of TLR-9 act on multiple cell subsets in mouse and man in vitro and prevent death in vivo from systemic inflammation. J Immunol 174: 5193–5200.

    Article  CAS  Google Scholar 

  • Flemington EK, Goldfeld AE, Speck SH . (1991). Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis. J Virol 65: 7073–7077.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster SL, Hargreaves DC, Medzhitov R . (2007). Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447: 972–978.

    Article  CAS  Google Scholar 

  • Heeg K, Dalpke A, Peter M, Zimmermann S . (2008). Structural requirements for uptake and recognition of CpG oligonucleotides. Int J Med Microbiol 298: 33–38.

    Article  CAS  Google Scholar 

  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T et al. (2002). Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168: 4531–4537.

    Article  CAS  Google Scholar 

  • Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S . (2008). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3: 352–363.

    Article  CAS  Google Scholar 

  • Iwakiri D, Takada K . (2004). Phosphatidylinositol 3-kinase is a determinant of responsiveness to B cell antigen receptor-mediated Epstein-Barr virus activation. J Immunol 172: 1561–1566.

    Article  CAS  Google Scholar 

  • Jenkins PJ, Binne UK, Farrell PJ . (2000). Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol 74: 710–720.

    Article  CAS  Google Scholar 

  • Klein E, Kis LL, Klein G . (2007). Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 26: 1297–1305.

    Article  CAS  Google Scholar 

  • Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S et al. (2005). Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280: 8606–8616.

    Article  CAS  Google Scholar 

  • Kumagai Y, Takeuchi O, Akira S . (2008). TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev 60: 795–804.

    Article  CAS  Google Scholar 

  • Kurosaki T . (1999). Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol 17: 555–592.

    Article  CAS  Google Scholar 

  • Ladell K, Dorner M, Zauner L, Berger C, Zucol F, Bernasconi M et al. (2007). Immune activation suppresses initiation of lytic Epstein-Barr virus infection. Cell Microbiol 9: 2055–2069.

    Article  CAS  Google Scholar 

  • Luka J, Kallin B, Klein G . (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94: 228–231.

    Article  CAS  Google Scholar 

  • Novak EJ, Rabinovitch PS . (1994). Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios. Cytometry 17: 135–141.

    Article  CAS  Google Scholar 

  • Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A et al. (2007). From the cover: malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104: 1919–1924.

    Article  CAS  Google Scholar 

  • Peng SL . (2005). Signaling in B cells via Toll-like receptors. Curr Opin Immunol 17: 230–236.

    Article  CAS  Google Scholar 

  • Rechsteiner MP, Berger C, Weber M, Sigrist JA, Nadal D, Bernasconi M . (2007). Silencing of latent membrane protein 2B reduces susceptibility to activation of lytic Epstein-Barr virus in Burkitt's lymphoma Akata cells. J Gen Virol 88: 1454–1459.

    Article  CAS  Google Scholar 

  • Rechsteiner MP, Berger C, Zauner L, Sigrist JA, Weber M, Longnecker R et al. (2008). Latent membrane protein 2B regulates susceptibility to induction of lytic Epstein-Barr virus infection. J Virol 82: 1739–1747.

    Article  CAS  Google Scholar 

  • Rickinson A, Kieff E . (2007). Epstein-Barr Virus. In: Knipe D, Howley P (eds). Fields Virology, Lippincott Williams & Wilkins: Philadelphia.

    Google Scholar 

  • Rochford R, Cannon MJ, Moormann AM . (2005). Endemic Burkitt's lymphoma: a polymicrobial disease? Nat Rev Microbiol 3: 182–187.

    Article  CAS  Google Scholar 

  • Ryan JL, Fan H, Swinnen LJ, Schichman SA, Raab-Traub N, Covington M et al. (2004). Epstein-Barr virus (EBV) DNA in plasma is not encapsidated in patients with EBV-related malignancies. Diagn Mol Pathol 13: 61–68.

    Article  CAS  Google Scholar 

  • Sanjuan MA, Rao N, Lai KT, Gu Y, Sun S, Fuchs A et al. (2006). CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J Cell Biol 172: 1057–1068.

    Article  CAS  Google Scholar 

  • Takada K . (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33: 27–32.

    Article  CAS  Google Scholar 

  • Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM . (2004). Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol 16: 17–22.

    Article  CAS  Google Scholar 

  • Tovey MG, Lenoir G, Begon-Lours J . (1978). Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276: 270–272.

    Article  CAS  Google Scholar 

  • Tsurumi T, Fujita M, Kudoh A . (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15: 3–15.

    Article  CAS  Google Scholar 

  • Yi AK, Peckham DW, Ashman RF, Krieg AM . (1999). CpG DNA rescues B cells from apoptosis by activating NFkappaB and preventing mitochondrial membrane potential disruption via a chloroquine-sensitive pathway. Int Immunol 11: 2015–2024.

    Article  CAS  Google Scholar 

  • Yuan J, Cahir-McFarland E, Zhao B, Kieff E . (2006). Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol 80: 2548–2565.

    Article  CAS  Google Scholar 

  • zur Hausen H, O'Neill FJ, Freese UK, Hecker E . (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272: 373–375.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jürg Tschopp, Hans-Peter Beck and Sebastian Rusch for providing reagents. This work was supported by grants from the Cancer League of the Canton Zurich, the Swiss National Foundation (no. 310040-114118), Oncosuisse, the Forschungskredit of the University of Zurich (no. 54192002) and UBS donation by a client.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Nadal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zauner, L., Melroe, G., Sigrist, J. et al. TLR9 triggering in Burkitt's lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification. Oncogene 29, 4588–4598 (2010). https://doi.org/10.1038/onc.2010.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.203

Keywords

This article is cited by

Search

Quick links