Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A Rac–Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells

Abstract

The activation of receptor tyrosine kinases, particularly ErbB2, has an important role in the genesis of breast cancer. ErbB2 kinase activity promotes Ras-mediated stimulation of downstream protein kinase cascades, including the Ras/Raf-1/MAPK/ERK kinase (Mek)/extracellular signal-regulated kinase (Erk) pathway, leading to tumor cell growth and migration. Signaling through the Ras–Erk pathway can be influenced by p21-activated kinase-1 (Pak1), an effector of the Rho family GTPases Rac and Cdc42. In this study, we asked if ErbB2 expression correlates with Pak1 and Erk activity in human breast cancer specimens, and if Pak1 signaling is required for ErbB2 transformation in a three-dimensional (3D) in vitro setting and in xenografts. We found a correlation between ErbB2 expression and activation of Pak in estrogen receptor-positive human breast tumor samples and observed that in 3D cultures, activation of Rac–Pak1 pathway by ErbB2 homodimers induced growth factor-independent proliferation and promoted disruption of 3D mammary acinar-like structures through activation of the Erk and Akt pathways. Further, we found that inhibition of Pak1 by small molecules compromised activation of Erk and Akt, resulting in reversion of the malignant phenotype and restoration of normal acinar architecture. Finally, ErbB2-amplified breast cancer cells expressing a specific Pak inhibitor showed delayed tumor formation and downregulation of Erk and Akt signaling in vivo. These data imply that the Rac–Pak pathway is vital to ErbB2-mediated transformation and that Pak inhibitors represent plausible drug targets in breast cancers in which ErbB2 signaling is activated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CA:

constitutive active

DN:

dominant negative

ER:

estrogen receptor

GST:

glutathione-S-transferase

Pak:

p21-activated kinase

PBD:

p21-binding domain

PBS:

phosphate-buffered saline

PID:

Pak inhibitor domain

rBM:

reconstituted basement membrane

RTK:

receptor protein tyrosine kinase

3D:

three-dimensional

TMA:

tissue microarray

References

  • Amundadottir LT, Leder P . (1998). Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16: 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Arias-Romero LE, Chernoff J . (2008). A tale of two Paks. Biol Cell 100: 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Beeser A, Jaffer ZM, Hofmann C, Chernoff J . (2005). Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J Biol Chem 280: 36609–36615.

    Article  CAS  PubMed  Google Scholar 

  • Bokoch GM . (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72: 743–781.

    Article  CAS  PubMed  Google Scholar 

  • Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15: 322–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dummler B, Ohshiro K, Kumar R, Field J . (2009). Pak protein kinases and their role in cancer. Cancer Metastasis Rev 28: 51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eblen ST, Slack JK, Weber MJ, Catling AD . (2002). Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEKI-ERK complexes. Mol Cell Biol 22: 6023–6033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE et al. (1997). Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 16: 6426–6438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffer ZM, Chernoff J . (2002). p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34: 713–717.

    Article  CAS  PubMed  Google Scholar 

  • Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R et al. (2008). Targeting Large Kinase Active Site with Rigid, Bulky Octahedral Ruthenium Complexes. J Am Chem Soc 130: 15764–15765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. (2004). Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101: 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML . (1997). Construction of adenovirus vectors through Cre-lox recombination. J Virol 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi M, Onishi K, Kikuchii C, Gotoh Y . (2008). Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann C, Shepelev M, Chernoff J . (2004). The genetics of Pak. J Cell Sci 117: 4343–4354.

    Article  CAS  PubMed  Google Scholar 

  • Holm C, Rayala S, Jirstrom K, Stal O, Kumar R, Landberg G. (2006). Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst 98: 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Hynes NE, MacDonald G . (2009). ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ et al. (1996). ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 15: 254–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsella TM, Nolan GP . (1996). Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Mullins SR, Sloane BF, Mattingly RR . (2008). p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 10: 314–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lightcap CM, Kari G, Arias-Romero LE, Chernoff J, Rodeck U, Williams JC . (2009). Interaction with LC8 is required for Pak1 nuclear import and is indispensable for zebrafish development. PLoS One 4: e6025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R et al. (2008). Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc 130: 15764–15765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J et al. (2008). Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol 44: 429–434.

    Article  CAS  PubMed  Google Scholar 

  • Menard RE, Mattingly RR . (2003). Cell surface receptors activate p21-activated kinase 1 via multiple Ras and PI3-kinase-dependent pathways. Cell Signal 15: 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porchia LM, Guerra M, Wang YC, Zhang Y, Espinosa AV, Shinohara M et al. (2007). OSU03012, a celecoxib derivative, directly targets p21 activated kinase. Mol Pharmacol 72: 1124–1131.

    Article  CAS  PubMed  Google Scholar 

  • Rayala SK, Molli PR, Kumar R . (2006). Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Res 66: 5985–5988.

    Article  CAS  PubMed  Google Scholar 

  • Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H et al. (2000). Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19: 3013–3020.

    Article  CAS  PubMed  Google Scholar 

  • Shalaby MR, Shepard HM, Presta L, Rodrigues ML, Beverley PC, Feldmann M et al. (1992). Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J Exp Med 175: 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H et al. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–935.

    Article  CAS  PubMed  Google Scholar 

  • Soule HD, Maloney TM, Wolman SR, Peterson WDJ, Brenz R, McGrath CM et al. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  • Srinivasan S, Wang F, Glavas S, Ott A, Hofmann F, Aktories K et al. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J Cell Biol 160: 3375–3385.

    Article  Google Scholar 

  • Treeck O, Diedrich K, Ortmann O . (2003). The activation of an extracellular signal-regulated kinase by oestradiol interferes with the effects of trastuzumab on HER2 signalling in endometrial adenocarcinoma cell lines. Eur J Cancer 39: 1302–1309.

    Article  CAS  PubMed  Google Scholar 

  • Viaud J, Peterson JR . (2009). An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol Cancer Ther 8: 2559–2565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R . (2005). PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25: 2931–2936.

    Article  Google Scholar 

  • Wang SE, Shin I, Wu FY, Friedman DB, Arteaga CL . (2006). HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta. Cancer Res 66: 9591–9600.

    Article  CAS  PubMed  Google Scholar 

  • Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ . (2009). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 122: 35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan L, Xiang B, Muthuswamy SK . (2006). Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res 66: 5201–5208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dan Kalman (Emory University School of Medicine) and Ariad Pharmaceuticals, for their gifts of pAd-lox vectors and AP1510, respectively, and Fang Zhu, of the FCCC Biostatistics Facility, for statistical analysis of TMA and xengraft data. This work was supported by grants from the NIH to JC (R01 CA58836) and SM (R01 CA098830) and to the Fox Chase Cancer Center (P30 CA006927), as well as by an appropriation from the state of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Chernoff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias-Romero, L., Villamar-Cruz, O., Pacheco, A. et al. A Rac–Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene 29, 5839–5849 (2010). https://doi.org/10.1038/onc.2010.318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.318

Keywords

This article is cited by

Search

Quick links