Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RAC3 is a pro-migratory co-activator of ERα

Abstract

Estrogen receptor alpha (ERα) is a ligand-dependent nuclear receptor that is important in breast cancer genesis, behavior and response to hormone-based therapies. A T7 phage display screen against full-length human ERα, coupled with genome-wide exon arrays, was used to identify RAC3 as a putative ERα co-regulator. RAC3 is a Rho family small GTPase that is associated with cytoskeletal rearrangement. We demonstrate a novel role for nuclear RAC3 as an ERα transcriptional activator, with prognostic implications for metastatic disease. Through in vitro and cell-based studies, RAC3 was shown to exist in a GTP-bound state and act as a ligand specific ERα co-activator of E2-induced transcription. Overexpression of RAC3 induced pro-growth and pro-migratory genes that resulted in increased migration of ERα-positive breast cancer cells. Chemical inhibition and genetic knockdown of RAC3 antagonized E2-induced cell proliferation, cell migration and ERα mediated gene expression, indicating that RAC3 is necessary for full ERα transcriptional activity. In agreement with the molecular and cellular data, RAC3 overexpression in ERα-positive breast cancers correlated with a significant decrease in recurrence free survival and a significant increase in the odds ratio of metastasis. In conclusion, RAC3 is a novel ERα co-activator that promotes cell migration and has prognostic value for ERα-positive breast cancer metastasis. RAC3 may also be a useful therapeutic target for ERα-positive breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Baugher PJ, Krishnamoorthy L, Price JE, Dharmawardhane SF . (2005). Rac1 and Rac3 isoform activation is involved in the invasive and metastatic phenotype of human breast cancer cells. Breast Cancer Res 7: R965–R974.

    Article  CAS  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S . (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294: 1351–1362.

    Article  CAS  Google Scholar 

  • Chan AY, Coniglio SJ, Chuang Y-y, Michaelson D, Knaus UG, Philips MR et al. (2005). Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24: 7821–7829.

    Article  CAS  Google Scholar 

  • Chang CY, Norris JD, Jansen M, Huang HJ, McDonnell DP . (2003). Application of random peptide phage display to the study of nuclear hormone receptors. Methods Enzymol 364: 118–142.

    Article  CAS  Google Scholar 

  • Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sorlie T et al. (2005). Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102: 3738–3743.

    Article  CAS  Google Scholar 

  • Gould CM, Diella F, Via A, Puntervoll P, Gemund C, Chabanis-Davidson S et al. (2010). ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 38: D167–D180.

    Article  CAS  Google Scholar 

  • Gururaj AE, Singh RR, Rayala SK, Holm C, den Hollander P, Zhang H et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc Natl Acad Sci USA 103: 6670–6675.

    Article  CAS  Google Scholar 

  • Hajdo-Milasinović A, Ellenbroek SIJ, van Es S, van der Vaart B, Collard JG . (2007). Rac1 and Rac3 have opposing functions in cell adhesion and differentiation of neuronal cells. J Cell Sci 120: 555–566.

    Article  Google Scholar 

  • Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M . (1994). Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264: 1455–1458.

    Article  CAS  Google Scholar 

  • Hall JM, McDonnell DP . (2005). Co-regulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5: 343–357.

    Article  Google Scholar 

  • Hampf M, Gossen M . (2006). A protocol for combined photinus and renilla luciferase quantification compatible with protein assays. Anal Biochem 356: 94–99.

    Article  CAS  Google Scholar 

  • Harrell JC, Dye WW, Allred DC, Jedlicka P, Spoelstra NS, Sartorius CA et al. (2006). Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66: 9308–9315.

    Article  CAS  Google Scholar 

  • Heasman SJ, Ridley AJ . (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9: 690–701.

    Article  CAS  Google Scholar 

  • Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J et al. (2007). Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87: 905–931.

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  Google Scholar 

  • Johnston SR . (2010). New strategies in estrogen receptor-positive breast cancer. Clin Cancer Res 16: 1979–1987.

    Article  CAS  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S et al. (2009). Human protein reference database—2009 update. Nucleic Acids Res 37: D767–D772.

    Article  CAS  Google Scholar 

  • Kumar R, Gururaj AE, Vadlamudi RK, Rayala SK . (2005). The clinical relevance of steroid hormone receptor co-repressors. Clin Cancer Res 11: 2822–2831.

    Article  CAS  Google Scholar 

  • Lahusen T, Henke RT, Kagan BL, Wellstein A, Riegel AT . (2009). The role and regulation of the nuclear receptor co-activator AIB1 in breast cancer. Breast Cancer Res Treat 116: 225–237.

    Article  CAS  Google Scholar 

  • Leong H, Sloan JR, Nash PD, Greene GL . (2005). Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha. Mol Endocrinol 19: 2930–2942.

    Article  CAS  Google Scholar 

  • Leung K, Nagy A, Gonzalez-Gomez I, Groffen J, Heisterkamp N, Kaartinen V . (2003). Targeted expression of activated Rac3 in mammary epithelium leads to defective postlactational involution and benign mammary gland lesions. Cells Tissues Organs (Print) 175: 72–83.

    Article  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524.

    Article  CAS  Google Scholar 

  • Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG . (2000). Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97: 185–189.

    Article  CAS  Google Scholar 

  • Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124: 1283–1298.

    Article  CAS  Google Scholar 

  • Muramatsu M, Inoue S . (2000). Estrogen receptors: how do they control reproductive and nonreproductive functions? Biochem Biophys Res Commun 270: 1–10.

    Article  CAS  Google Scholar 

  • Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J et al. (1997). Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17: 5338–5347.

    Article  CAS  Google Scholar 

  • Oesterreich S, Zhang P, Guler RL, Sun X, Curran EM, Welshons WV et al. (2001). Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth. Cancer Res 61: 5771–5777.

    CAS  Google Scholar 

  • Onesto C, Shutes A, Picard V, Schweighoffer F, Der CJ . (2008). Characterization of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Methods Enzymol 439: 111–129.

    Article  CAS  Google Scholar 

  • Pan YF, Wansa KD, Liu MH, Zhao B, Hong SZ, Tan PY et al. (2008). Regulation of estrogen receptor-mediated long range transcription via evolutionarily conserved distal response elements. J Biol Chem 283: 32977–32988.

    Article  CAS  Google Scholar 

  • Pike AC . (2006). Lessons learnt from structural studies of the oestrogen receptor. Best Pract Res Clin Endocrinol Metab 20: 1–14.

    Article  CAS  Google Scholar 

  • Prest SJ, May FE, Westley BR . (2002). The estrogen-regulated protein, TFF1, stimulates migration of human breast cancer cells. FASEB J 16: 592–594.

    Article  CAS  Google Scholar 

  • Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA et al. (2006). P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res 66: 1694–1701.

    Article  CAS  Google Scholar 

  • Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S et al. (2005). Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24: 4531–4539.

    Article  CAS  Google Scholar 

  • Sanchez AM, Flamini MI, Baldacci C, Goglia L, Genazzani AR, Simoncini T . (2010). Estrogen receptor-\{alpha\} promotes breast cancer cell motility and invasion via focal adhesion kinase and n-wasp. Mol Endocrinol 24: 2114–2125.

    Article  CAS  Google Scholar 

  • Sandrock K, Bielek H, Schradi K, Schmidt G, Klugbauer N . (2010). The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 11: 198–209.

    Article  CAS  Google Scholar 

  • Shang Y, Brown M . (2002). Molecular determinants for the tissue specificity of SERMs. Science 295: 2465–2468.

    Article  CAS  Google Scholar 

  • Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M . (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103: 843–852.

    Article  CAS  Google Scholar 

  • Talukder AH, Meng Q, Kumar R . (2006). CRIPak, a novel endogenous Pak1 inhibitor. Oncogene 25: 1311–1319.

    Article  CAS  Google Scholar 

  • Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS . (2005). Breast cancer metastasis to the central nervous system. Am J Pathol 167: 913–920.

    Article  CAS  Google Scholar 

  • Xie JW, Haslam SZ . (2008). Extracellular matrix, Rac1 signaling, and estrogen-induced proliferation in MCF-7 breast cancer cells. Breast Cancer Res Treat 110: 257–268.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NCI 2-RO1-CA089489 (GLG), Department of Defense W81XWH-04-1-0791 (GLG) and a gift from the Ludwig Foundation (GLG). Core services were supported in part by a 5P30-CA01459935 Cancer Center grant. MPW was partially supported by NIH grant 5T32GM007183-35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G L Greene.

Ethics declarations

Competing interests

The authors declare no conflicts of interest

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, M., Zhang, M., Le, T. et al. RAC3 is a pro-migratory co-activator of ERα. Oncogene 30, 1984–1994 (2011). https://doi.org/10.1038/onc.2010.583

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.583

Keywords

This article is cited by

Search

Quick links